首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From measurements of the decrease in the heat (enthalpy) of transition in the solid phase using differential scanning calorimetry, the apparent molar heats of solution, slope ΔHt/x, the partial molar heats of solution at infinite dilution, χ, and the heats of solution, ΔHs°, of Tl+ in CsNO3 crystal and Cs+ in TlNO3 crystal and Rb+ in CsNO3 crystal and Cs+ in RbNO3 crystal along with their recovered lattice energies, ΔHL°, are reported. ΔHs° of Tl+ and Rb+ in CsNO3 crystal are each found to be negligible or zero representing an ideal solid solution, i.e. ΔHmix=0. The complete phase diagrams of the TlNO3-CsNO3 and RbNO3-CsNO3 systems with details of the sub-solidus regions are included. The properties of Tl(1−x)CsxNO3 and Rb(1−x)CsxNO3 compositions are discussed in terms of a ‘mixed crystal’ or ‘crystalline solid solution’ in relation to parallel compositions of Tl(1−x)RbxNO3.  相似文献   

2.
The adsorption of ethylene on Cu12Pt2 clusters has been studied within the density functional theory (DFT) approach to understand the high ethylene selectivity of Cu-rich Pt-Cu catalyst particles in the reaction of hydrogen-assisted 1,2-dichloroethane dechlorination. The structural parameters for Cu12Pt2 clusters with D4h, D2d, and C3v symmetry have been calculated. The relative stability of the isomeric Cu12Pt2 clusters follows the order: C3v > D2d > D4h. Each isomer has an active site for ethylene adsorption that consists of a single Pt atom surrounded by Cu atoms. The interaction of ethylene with the active site yields a π-C2H4 adsorption complex. The strongest π-C2H4 complex forms with the cluster of C3v symmetry; the bonding energy, ΔEπ(C2H4), is −15.6 kcal mol−1. The bonding energies for the π-C2H4 complex with Cu14 and Pt14 clusters are −6.5 and −18.8 kcal mol−1, respectively.The addition of Pt to Cu modifies the valence spd-band of the cluster as compared to a Cu14 cluster. The DOS near the Fermi level increases when C2H4 adsorbs on the Cu12Pt2 cluster. As well, the center of the d-band shifts toward lower binding energies. Ethylene adsorption also induces a number of states below the d-band. These states correspond to those of gas-phase C2H4.The vibrational frequencies of C2H4 adsorbed on the clusters of D4h and C3v symmetry have been calculated. The phonon vibrations occur below 250 cm−1. The intense bands around 200 cm−1 are attributed to stretching vibrations of the Pt-Cu bonds normal to the cluster surface. The stretching vibrations of the Pt-C bonds depend on the local structure of the active site: νs(Pt-C) = 268 cm−1 and νas(Pt-C) = 357 cm−1 for the cluster of the D4h symmetry; νs(Pt-C) = 335 cm−1 and νas(Pt-C) = 397 cm−1 for the cluster of the C3v symmetry. Bands in the range of 800-3100 cm−1 are attributed to vibrations of the adsorbed C2H4 molecule. The signature frequencies of the π-C2H4 adsorption complex are the δs(CH2) deformation vibration at ∼1200 cm−1 and the ν(C-C) stretching vibration at ∼1500 cm−1. These vibration are absent for di-σ-C2H4 adsorption complexes.  相似文献   

3.
The ethylene adsorption of Turkey clinoptilolite-rich tuff from Gordes and Bigadic region of western of Anatolia and their exchanged forms (K+, Na+ and Ca2+) were investigated. The clinoptilolite samples were characterized using XRD, TG-DTA and nitrogen adsorption methods. Adsorption isotherms for ethylene on natural and modified forms of both adsorbents at 277 K and 293 K were obtained at pressures up to 38 kPa. Uptake of ethylene increased as Na-CLN < Ca-CLN < K-CLN < Natural CLN for Gordes zeolite at 277 K, 293 K and for Bigadic zeolite at 277 K. For Bigadic zeolites at 293 K, uptake of ethylene increased in the order Ca-CLN < Na-CLN < K-CLN < Natural CLN. It was found that ethylene adsorption capacity of Bigadic clinoptilolite samples was much greater than Gordes clinoptilolite samples except K+ modified forms at both temperatures. These results show that both natural clinoptilolites have a considerable potential for the removal of ethylene.  相似文献   

4.
Adsorption of carbon dioxide on a faujasite-type H-Y zeolite (Si:Al = 2.6:1) was studied by variable-temperature (200-290 K range) infrared spectroscopy. Adsorbed CO2 molecules interact with the Brønsted acid Si(OH)Al groups located inside the zeolite supercage, bringing about a characteristic bathochromic shift of the O-H stretching mode from 3645 cm−1 (free OH group) to 3540 cm−1 (hydrogen-bonded CO2 adsorption complex). Simultaneously, the asymmetric (ν3) mode of adsorbed CO2 is observed at 2353 cm−1. From the observed variation of the integrated intensity of the 3645 and 2353 cm−1 IR absorption bands upon changing temperature, corresponding values of standard adsorption enthalpy and entropy were found to be ΔH° = −28.5(±1) kJ mol−1 and ΔS° = −129(±10) J mol−1 K−1. Comparison with the reported values of ΔH° for CO2 adsorption on other zeolites is briefly discussed.  相似文献   

5.
We have performed molecular dynamics simulations of alkali metal (Li+, Na+, K+, Rb+, Cs+) and halide (F, Cl, Br, I) ions in supercritical water at 673 K. The calculations were done for water at three different densities of 1.0, 0.7 and 0.35 g cm−3 to investigate the effects of solute size on the diffusion of ions in supercritical water. On increase of ion size, we observe a maximum for diffusion of ions in supercritical water of higher densities (1.0 and 0.7 g cm−3). However, no such maximum is found for ion diffusion in the supercritical water of low density (0.35 g cm−3) or for diffusion of neutral solutes at all densities. These results are analyzed in terms of passage through voids and necks present in supercritical water. Correlations of the observed diffusion behavior with the sizes of ions and voids present in the systems are discussed.  相似文献   

6.
The infrared spectra and stability of CO and H2O sorption over Ag-exchanged ZSM-5 zeolite were investigated by using density function theory (DFT). The changes of NBO charge show that the electron transfers from CO molecule to the Ag+ cation to form an σ-bond, and it accompanies by the back donation of d-electrons from Ag+ cation to the CO (π*) orbital as one and two CO molecules are adsorbed on Ag-ZSM-5. The free energy changes ΔG, −5.55 kcal/mol and 6.52 kcal/mol for one and two CO molecules, illustrate that the Ag+(CO)2 complex is unstable at the room temperature. The vibration frequency of C-O stretching of one CO molecule bonded to Ag+ ion at 2211 cm−1 is in good agreement with the experimental results. The calculated C-O symmetric and antisymmetric stretching frequencies in the Ag+(CO)2 complex shift to 2231 cm−1 and 2205 cm−1 when the second CO molecule is adsorbed. The calculated C-O stretching frequency in CO-Ag-ZSM-5-H2O complex shifts to 2199 cm−1, the symmetric and antisymmetric O-H stretching frequencies are 3390 cm−1 and 3869 cm−1, respectively. The Gibbs free energy change (ΔGH2O) is −6.58 kcal/mol as a H2O molecule is adsorbed on CO-Ag-ZSM-5 complex at 298 K. The results show that CO-Ag-ZSM-5-H2O complex is more stable at room temperature.  相似文献   

7.
In this research, the adsorption of a model sulfur compound, thiophene, from a simulated gasoline onto Ce-Y zeolite in pellet and powder forms was investigated. For this purpose, zeolite Na-Y was synthesized, and Ce-Y zeolite was prepared via solid-state ion-exchanged (SSIE) method. Adsorptive desulfurization of model gasoline was conducted in a batch reactor at ambient conditions to evaluate the equilibrium and kinetics of thiophene adsorption onto Ce-Y zeolite. The equilibrium data were fitted to Langmuire and Toth models. Pseudo-n-order and modified n-order models, LDF-base model, and intra-particle diffusion model were evaluated to fit the kinetic of the adsorption process and to determine the mechanism of it. The corresponding parameters and/or correlation coefficients of each model were reported. The LDF-base model was used also to fit the mass transfer coefficient for both powder and pellet forms of the adsorbent. The best fit estimates for the mass transfer coefficient were obtained 4 × 10−11 m/s and k = 3.1 × 10−12[exp( − t/τ) + 1/(t + 10−4)], for powder and pellet form adsorbents, respectively.  相似文献   

8.
Ethylene adsorption was studied by use of DFT/B3LYP with basis set 6-31G(d,p) in Gaussian’03 software. It was found that ethylene has adsorbed molecularly on all clusters with π adsorption mode. Relative energy values were calculated to be −50.86 kcal/mol, −20.48 kcal/mol, −32.44 kcal/mol and −39.27 kcal/mol for Ni13 nanocluster, Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) surface cluster models, respectively. Ethylene adsorption energy is inversely proportional to Ni coordination number when Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) cluster models and Ni13 nanocluster are compared with each other.  相似文献   

9.
Rb+ to Rb2+ and 2K+ to K + K2+ each provide a reaction with a net enthalpy equal to the potential energy of atomic hydrogen. The presence of these gaseous ions with thermally dissociated hydrogen formed a plasma having strong VUV emission with a stationary inverted Lyman population. Significant Balmer α line broadening of 18 and 9 eV was observed from a rt-plasma of hydrogen with KNO3, and RbNO3, respectively, compared to 3 eV from a hydrogen microwave plasma. The reaction was exothermic since excess power of about 20 mW/cc was measured by Calvet calorimetry. We propose an energetic catalytic reaction involving a resonance energy transfer between hydrogen atoms and Rb+ or 2K+ to form a very stable novel hydride ion. Its predicted binding energy of 3.0471 eV with the fine structure was observed at 4071 Å, and its predicted bound-free hyperfine structure lines matched those observed for about 40 lines to within.01 percent. Characteristic emission from each catalyst was observed. This catalytic reaction may pump a CW HI laser.  相似文献   

10.
Hydrogen adsorption (physisorption) on the faujasite-type zeolite Mg-X was studied by means of variable-temperature (80-140 K) FT-IR spectroscopy. Perturbation of the adsorbed H2 molecules by the cationic adsorbing centres of the zeolite renders the H-H stretching mode IR active, at 4065 cm−1. Simultaneous measurement of IR absorbance and hydrogen equilibrium pressure, for a series of spectra recorded at the increasing temperature, allowed standard adsorption enthalpy and entropy to be determined. They resulted to be ΔH0 = −13 kJ mol−1 and ΔS0 = −114 J mol−1 K−1, respectively. Both, spectroscopic and thermodynamic results are discussed in the broader context of corresponding data for hydrogen adsorption on other alkali and alkaline-earth cation exchanged zeolites, showing that, while an approximate correlation exists between ΔH0 and H-H stretching frequency, deviations can be expected for the case of zeolites containing small metal cations.  相似文献   

11.

The products of the radiolysis and photolysis of crystalline sodium, potassium, rubidium, cesium nitrates have been investigated by the diffuse reflectance infrared Fourier transform spectroscopy. The bands in the 1260-1220 and 804-809 cm?1 regions observed after the n -irradiation and photolysis by a light with the wave length 253.7 nm of crystalline alkali nitrates were identified as the vibrational modes of NO? 2 x 3 and x 2, respectively. The frequency of the x 3 oscillation of nitrite ions decreases from 1260 cm?1 up to 1220 cm?1 with the increase of the atomic weight or polarizability of a cation. The detection limit of the nitrite ions (1 ‐ 10?7 mol g?1) for the diffuse reflection method has been determined. The bands observed in KNO3, RbNO3 and CsNO3 spectra in the 947-940 and 722-737 cm?1 regions appearing only after photolysis are due to stretch oscillations of the peroxide bond O-O and wagging oscillations of the -ON=O group of peroxynitrite accordingly.  相似文献   

12.
Adsorption (at a low temperature) of nitrogen on the protonic zeolite H-FER results in hydrogen bonding of the adsorbed N2 molecules with the zeolite Si(OH)Al Brønsted acid groups. This hydrogen bonding interaction leads to activation, in the IR, of the fundamental NN stretching mode, which appears at 2331 cm−1. From the infrared spectra taken over a temperature range, while simultaneously recording integrated IR absorbance, temperature and nitrogen equilibrium pressure, the thermodynamics of the adsorption process was studied. The standard adsorption enthalpy and entropy resulted to be ΔH° = −20(±1) kJ mol−1 and ΔS° = −131(±10) J mol−1 K−1, respectively.  相似文献   

13.
Methylidyne (CH) was prepared on Pt(1 1 1) by three methods: thermal decomposition of diiodomethane (CH2I2), ethylene decomposition at temperatures above 450 K, and surface carbon hydrogenation. Methylidyne and its precursors are characterized by reflection absorption infrared spectroscopy (RAIRS). The C-I bond of diiodomethane breaks upon adsorption to produce methylene (CH2), which decomposes to methylidyne at temperatures above 130 K. Above 200 K, methylidyne is the only hydrocarbon species observed with RAIRS, although reaction channels for the formation of methane (CH4) and ethylene (C2H4) are indicated by temperature programmed desorption (TPD). As is well known from numerous previous studies, ethylene decomposes to ethylidyne (CCH3) upon exposure to Pt(1 1 1) at 410 K. Upon annealing to 450 K, ethylidyne dissociates through two reaction pathways, dehydrogenation to ethynyl (CCH) and C-C bond scission to methylidyne. Ethylene dehydrogenation on the surface at 750 K and under low ethylene exposures produces surface carbon that can be hydrogenated to methylidyne with C-H and C-D stretch frequencies of 2956 and 2206 cm−1, respectively. Hydrogen co-adsorption on the surface causes these frequencies to shift to higher values. Methylidyne is stable on Pt(1 1 1) to temperatures up to 500 K.  相似文献   

14.
Measurements of the change in heat (enthalpy) of solid-solid transition ΔHt and of fusion ΔHfus in crystalline CsCl effected by the presence of guest ion K+ up to 56.5 mol% using differential scanning calorimetry are reported. The range of K+ solubility is found to be higher and at variance with the subsolidus region described in earlier reports. Novel features of ΔHt and ΔHfus dependence on solute composition are in contrast to parallel binary systems, viz. CsNO3-RbNO3, CsNO3-TlNO3 and RbNO3-TlNO3. Some fundamental solution quantities are calculated from heat of transition, viz. slope ΔHt/x or and χ-apparent partial molar heat of solution and partial molar heat of solution at infinite dilution, respectively.  相似文献   

15.
The frequency response (FR) technique has been applied to study adsorption mechanism of ethene in parent Hmordenite (HMor) and the HMor (CuO/HMor, Cs+/HMor) which were modified by CuO and Cs+. The FR spectra of ethene in HMor, CuO/HMor and Cs+/HMor were recorded at temperatures between 252 and 273 K under the pressure of 0.2-30.0 Torr, and then those FR spectra were investigated. The results showed that two parallel adsorption processes exist in ethene/HMor system. Those two processes were attributed to adsorption process of ethene on proton acid sites (low frequency adsorption) and on hydrogen cation sites (high frequency adsorption); meanwhile the number of sites available for adsorption of ethene is 0.692 and 0.828 mmol g−1, respectively. The number of adsorption sites in low frequency is increased by the introduction of CuO which is located among the proton acid sites but covered the hydrogen ion sites in high frequency. Chemical adsorption of ethene is the main sorption process in CuO/HMor. The number of adsorption sites in low frequency is decreased by the introduction of Cs+ which counteracted proton acid sites in low frequency. Physical adsorption is the main sorption process in Cs+/HMor channels. The optimum content of CuO for modification is 5% (weight/weight). Combining the FR spectra and other methods such as isotherms and Langmuir model, a thorough understanding of the ethene adsorption processes on zeolites can be achieved.  相似文献   

16.
We studied the reactive ion scattering (RIS) of Cs+ from a Pt(1 1 1) surface adsorbed with CO and CO2 leading to the emission of CsCO+ and . The RIS products were measured as functions of adsorbate coverage and ion incidence energy for the range of 10-60 eV. The yield and cross-section for the RIS processes were extracted from these measurements. The RIS cross-section is higher for weakly adsorbed CO2 than for more strongly bound CO. The RIS energy-dependence shows a maximum at 15-20 eV and a decrease at higher energy. These observations provide evidence for the theoretically proposed mechanism of RIS, in which a slow Cs+ picks up an adsorbate in an Eley-Rideal abstraction reaction.  相似文献   

17.
P. Cerisier  B. Blin 《Ultrasonics》1982,20(3):130-134
Measurements of ultrasonic absorption and speed were carried out in molten LiNO3, NaNO3, RbNO3, KNO3 and CsNO3 by the pulse method. The results indicate that the bulk viscosity is due to a structural mechanism. The hole theory provides a model for this mechanism. Comparing the results of measurements at ultrasonic and Brillouin frequencies, the values of relaxation frequencies were deduced. These results were compared to those provided by the hole theory.  相似文献   

18.
In this study, the effect of one oxadiazole derivative (PBD) using as an electron injection layer (EIL) at Alq3/Cs2CO3 interface has been investigated. The present of PBD EIL was showed an interesting enhanced electron injection for OLEDs although the nominal electron injection barrier for PBD based OLEDs is much larger, because PBD owns an obvious higher intrinsic the Lowest Unoccupied Molecular Orbital level (2.3 eV) than that of Alq3 (3.0 eV). For example, the current density of OLEDs at 8 V was increased from 54 mA/cm2 to 168 mA/cm2 when inserting a thin PBD layer (5 nm) at Alq3/Cs2CO3 interface. Here the increased current is suggested associating with the changed electronic structure of PBD when it contacts with Cs2CO3.  相似文献   

19.
Studies of the structure changes in heated (20–200°C) and γ –irradiated (109- 5×109 R, E = 1.3 Mev, Tirrad. = 40°C) crystals CsNO3, RbNO3 and NaNO2 have been carried out by means of X-ray diffraction methods. The investigation of temperature effect on the crystal structure has shown that the phase transformation in CsNO3 and NaNO2 are of continuous type while that in RbNO3 is discontinuous. It has been found that crystal structures of CsNO3 and NaNO2 change under irradiation in the same way, as they change under heating, No changes of RbNO3 crystal structure caused by irradiation have been found. Experimental results agree with an assumption that radiation-induced structure changes of high-temperature type can be observed only in the compounds, the phase transition of which is of continuous type.  相似文献   

20.
We have studied adsorption of CO on Fe3O4(1 1 1) films grown on a Pt(1 1 1) substrate by temperature programmed desorption (TPD), infrared reflection absorption spectroscopy (IRAS) and high resolution electron energy loss spectroscopy (HREELS). Three adsorption states are observed, from which CO desorbs at ∼110, 180, and 230 K. CO adsorbed in these states exhibits stretching frequencies at ∼2115-2140, 2080 and 2207 cm−1, respectively. The adsorption results are discussed in terms of different structural models previously reported. We suggest that the Fe3O4(1 1 1) surface is terminated by 1/2 ML of iron, with an outermost 1/4 ML consisting of octahedral Fe2+ cations situated above an 1/4 ML of tetrahedral Fe3+ ions, in agreement with previous theoretical calculations. The most strongly bound CO is assigned to adsorption to Fe3+ cations present on the step edges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号