首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UV-B irradiation of blood-platelet concentrates is used in transfusion practice to prevent the development of post-transfusion alloimmunization and inactivate viruses and bacteria in the concentrates. UV-B radiation may affect the blood-platelet metabolism and function; therefore we have investigated the effect of UV-B irradiation on free radical production in blood platelets. Our results show that exposure of pig blood platelets to UV-B radiation (0.36 and 1.08 J/cm2) induces the generation of free radicals measured by the chemiluminescence method (respectively 28 and 148.6% above the control). The superoxide radical level after UV-B irradiation measured by the cytochrome c reduction method shows only a slight increase (p > 0.05). Free radical generation induced by UV-B radiation is dependent partly on blood-platelet activation and enzymatic pathways, since we have shown that wortmannin, an inhibitor of phosphatidylinositide 3-kinase, reduces the level of radicals formed in blood platelets after UV-B irradiation. This indicates that free radicals generated in blood platelets after stimulation by UV-B radiation are involved in platelet activation and metabolism of platelet polyphosphoinositides.  相似文献   

2.
Cell proliferation and cell death of keratinocytes are tightly regulated to ensure epidermal homeostasis. UV-B induces keratinocyte apoptosis. UV-B also induces lipid peroxidation of keratinocytes to increase their amount of malondialdehyde (MDA). These phenomena can be explained by the production of reactive oxygen species (ROS) induced by UV-B radiation. We synthesized 2-selenium-bridged beta-cyclodextrin (2-SeCD) to imitate glutathione peroxidase (GPX), an important antioxidant and established a damage system, in which keratinocytes can be damaged by Ultraviolet B (UV-B) radiation. Using this damage system we studied 2-SeCD protection of keratinocytes against injury induced by UV-B. Experimental results showed that 2-SeCD could protect keratinocytes from apoptosis. Moreover, 2-SeCD inhibits lipid peroxidation of keratinocytes and scavenges ROS. 2-SeCD inhibits the UV-B induced apoptotic signal transduction. This antiapoptotic mechanism may be partly related to the elimination of hydrogen peroxide.  相似文献   

3.
The study investigated the protective activity of red grape seeds (Vitis vinifera L, Burgund Mare variety) (BM) extracts in vivo on multiple doses of ultraviolet radiation (UV)-B-induced deleterious effects in SKH-1 mice skin. Eighty 8-weeks-old female SKH-1 mice were divided into 8 groups: control, vehicle, UV-B irradiated, vehicle+UV-B irradiated, BM 2.5mg polyphenols (PF)/cm(2)+UV-B irradiated, BM 4 mg PF/cm(2)+UV-B irradiated, UV-B+BM 2.5mg PF/cm(2), UV-B+BM 4 mg PF/cm(2). The extract was applied topically before or after each UV-B exposure (240 mJ/cm(2)), for 10 days consecutively. The antioxidant activity of BM extract is higher than gallic acid (k(BM)=0.017, k(gallic acid)=0.013). Multiple doses of UV-B generated the formation of cyclobutane pyrimidine dimers (CPDs) and sunburn cells, increased glutathione peroxidase (GPx) and catalase (CAT) activities respectively glutathione (GSH) and IL-1β levels in skin. In group treated with 2.5mg PF/cm(2) before UV-B irradiation BM extract inhibited UV-B-induced sunburn cells, restored the superoxide dismutase (MnSOD) activity, increased insignificantly CAT and GPx activities and reduced IL-1β level. The BM 4.0 mg PF/cm(2) treatment decreased GSH level and reduced the percentage of CPDs positive cells in skin. Both doses of BM extract administered after UV-B irradiation increased the MnSOD and GPx activities and reduced the formation of sunburn cells in skin. Our results suggest that BM extract might be a potential chemo-preventive candidate in reducing the oxidative stress and apoptosis induced by multiple doses of UV-B in skin.  相似文献   

4.
Cyanobacteria must cope with the negative effects of ultraviolet B (280-315 nm) (UV-B) stress caused by their obligatory light requirement for photosynthesis. The adaptation of the cyanobacterium Anabaena sp. to moderate UV-B radiation has been observed after 2 weeks of irradiation, as indicated by decreased oxidative stress, decreased damage, recovered photosynthetic efficiency and increased survival. Oxidative stress in the form of UV-B-induced production of reactive oxygen species was measured in vivo with the oxidative stress-sensitive probe 2',7'-dichlorodihydrofluorescein diacetate. Photooxidative damage by UV-B radiation, including lipid peroxidation and DNA strand breakage, was determined by a modified method using thiobarbituric acid reactive substances and fluorometric analysis of DNA unwinding. Photosynthetic quantum yield was determined by pulse amplitude-modulated fluorometry. The results suggest that moderate UV-B radiation results in an evident oxidative stress, enhanced lipid peroxidation, increased DNA strand breaks, elevated chlorophyll bleaching as well as decreased photosynthetic efficiency and survival during the initial exposure. However, DNA strand breaks, photosynthetic parameters and chlorophyll bleaching returned to their unirradiated levels after 4-7 days of irradiation. Oxidative stress and lipid peroxidation appeared to respond later because decreases were observed after 7 days of radiation. The survival curve against irradiation time exhibited a close relationship with the changes in photosynthetic quantum yield and DNA damage, with little mortality after 4 days. Growth inhibition by UV-B radiation was observed during the first 7 days of radiation, whereas normal growth resumed even under UV-B stress thereafter. An efficient defense system was assumed to come into play to repair photosynthetic and DNA damage and induce the de novo synthesis of UV-sensitive proteins and lipids, allowing the organisms to adapt to UV-B stress successfully and survive as well as grow. No induction of mycosporine-like amino acids (MAA) was observed during the adaptation of Anabaena sp. to UV-B stress in our work. The adaptation of the cyanobacterium correlated with and could be caused by the oxidative stress and oxidative damage.  相似文献   

5.
Reactive oxygen species (ROS) are involved in the oxidative damage of the cyanobacterium Anabaena sp. caused by UV-B (280-315 nm) radiation. UV-B-induced overproduction of ROS as well as the oxidative stress was detected in vivo by using the ROS-sensitive probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Thiobarbituric acid reactive substances (TBARS) and fluorometric analysis of DNA unwinding (FADU) methods were adapted to measure lipid peroxidation and DNA strand breaks in Anabaena sp. Moderate UV-B radiation causes an increase of ROS production, enhanced lipid peroxidation and DNA strand breaks, yielding a significantly decreased survival. In contrast, the supplementation of UV-A in our work only showed a significant increase in total ROS levels and DNA strand breaks while no significant effect on lipid peroxidation, chlorophyll bleaching or survival was observed. The presence of ascorbic acid and N-acetyl-L-cysteine (NAC) reversed the oxidative stress and protected the organisms from chlorophyll bleaching and the damage of photosynthetic apparatus induced by UV-B significantly, resulting in a considerably higher survival rate. Ascorbic acid also exhibited a significant protective effect on lipid peroxidation and DNA strand breaks while NAC did not show a substantial effect. These results suggest that ascorbic acid exhibited significantly higher protective efficiency with respect to DNA strand breaks and survival than NAC while NAC appears to be especially effective in defending the photosynthetic apparatus from oxidative damage.  相似文献   

6.
Abstract— The initial oxygenation or peroxidation of arachidonic acid seems to be an essential step for the synthesis of cyclic endoperoxides and prostaglandins. There has been some evidence and considerable interest in the role of superoxide anion, hydroxyl radicals or singlet oxygen as a source of oxygen in the formation of the active species (free radicals). A test capable of detecting active intermediates of lipid peroxidation and useful for studying the role of free radicals has been developed. The test resulted from the discovery that vitamin E markedly enhanced the reduction of nitroblue tetrazolium (NBT) during arachidonic acid peroxidation. Intact platelets, microsomes, sheep vesicular gland enzymes or peroxidases could provide essential enzyme activity. NBT and vitamin E when added to platelet microsomes inhibited the conversion of 14C arachidonic acid to HETE, HHT and thromboxanes. The combination also inhibited aggregation of platelets stimulated by collagen, thrombin, ADP and epinephrine. Prolonged incubation with these agents at the highest concentrations used in the study caused no change in morphology and had no deleterious effect on platelet levels of adenine nucleotides and serotonin. Results of our preliminary studies suggest that NBT and vitamin E can detect intermediates of lipid peroxidation, inhibit the conversion of arachidonic acid, prevent platelet aggregation and the release reaction without damaging the platelets morphologically or biochemically. As both the agents are scavengers of free radicals and in combination exert synergistic effects, the test system may serve as a probe in various free radical mediated events and may offer some degree of protection against free radical mediated pathological processes.  相似文献   

7.
The relative abilities of UV-A, B and C radiations to initiate lipid peroxidation and apolipoprotein (apo) B modification of human purified low density lipoproteins have been compared. Ultraviolet-B and C (at 310 and 254 nm, respectively) exhibited similar efficacy as shown by the increase in lipid peroxidation markers (conjugated dienes, thiobarbituric acid reactive substances and fluorescent lipid soluble products) and in oxysterols, as well as by the decrease of the contents of natural antioxidants (tocopherols and carotenes) and in polyunsaturated fatty acids. In contrast, UV-A (at 360 nm) was found poorly effective and only at very high radiation intensities. Under all the conditions used, apoB was not affected by the UV radiations as shown by the stability of amino acid composition (except tryptophan level) and of trinitrobenzenesulfonic acid reactive amino group content. Similarly, the low density lipoprotein size was not altered. By comparison, low density lipoproteins oxidized by transition metal presented strong alterations of apoB and major changes of the apparent low density lipoprotein size. Finally, low density lipoproteins irradiated by UV-B. or C exhibited a much higher cytotoxicity on cultured cells than those irradiated by UV-A. Under the conditions used in this paper, the cytotoxic effect of the irradiated low density lipoproteins was positively correlated with their content in lipid peroxidation products and inversely correlated with their tocopherol content.  相似文献   

8.
The photoprotector role of pigment dispersion in the melanophores of the crab, Chasmagnathus granulata, against DNA and oxidative damages caused by UV-A and UV-B was investigated. Intact and eyestalkless crabs were used. In eyestalkless crabs, the dorsal epidermis of the cephalothorax (dispersed melanophores) and the epidermis of pereiopods (aggregated melanophores) were analyzed. Intact crabs showed only dispersed melanophores in the two epidermis. Antioxidant enzymes activity and lipoperoxidation content were analyzed after UV-A (2.5 J/cm2) or UV-B (8.6 J/cm2) irradiation. DNA damage was analyzed by single cell electrophoresis (comet) assay, after exposure to UV-B (8.6 J/cm2). UV-A radiation increased the glutatione-S-transferase activity in the pereiopods epidermis of eyestalkless crabs (P<0.05). UV-B radiation induced DNA damage in the dorsal epidermis of eyestalkless crabs (P<0.05). In pereiopod epidermis of eyestalkless crabs, there was no significant difference between control and UV-B-exposed crabs. In the pereiopods epidermis of eyestalkless, the control group showed higher scores of DNA damage and approximately 50% of cellular viability. Because in eyestalkless and irradiated crabs the cellular viability was approximately 5%, it was not possible to observe nuclei for determination of DNA damage. The findings show that melanophores can play a role in the defense against harmful effects of a momentary exposure to UV radiation.  相似文献   

9.
The aim of the present study is to evaluate the occurrence of oxidative stress in the cladoceran Daphnia longispina exposed to UV-A and UV-B radiation. The activity of antioxidant enzymes and lipid peroxidation markers is investigated and the protective action of ascorbic acid determined. Results show differences in the lethality radioinduced by UV-A and UV-B. Both UV-A and UV-B exposure cause an important increase in malonaldehyde (MDA) concentration and catalase activity. Ascorbic acid addition reduces the MDA concentration, indicating that the oxidative stress caused by either UV-A or UV-B radiation can be controlled by antioxidants. The increase of the antioxidant enzymes may be a response mechanism to oxidative stress.  相似文献   

10.
The increase in UV-B radiation reaching the earth's surface has prompted extensive studies on the effects of UV-B on plants. However, most of these studies have not addressed the close characteristics related to future survival of plant populations. The purpose of this study was to investigate the effects of UV-B radiation on reactive oxygen species (ROS) accumulation and antioxidant defense system in relation to germination, tube length and viability of maize pollen. Our results indicate that increased UV-B radiation decreased the pollen germination rate and tube length in vitro and also its fertilization ability in the field. Production of O2•− and H2O2 increased by UV-B radiation treatment, and their continuous accumulation resulted in lipid peroxidization. The activities of superoxide dismutase, catalase, peroxidase and DPPH-radical scavenging were decreased by increased UV-B radiation. The increased ROS and lipid peroxidization, and decreased activities of the antioxidants may be attributed to the effects of UV-B radiation on pollen germination, tube growth and fertilization ability.  相似文献   

11.
Abstract— Recent studies have shown that ultraviolet (UV) irradiation induces a systemic effect which enhances subsequent tumor induction by benzo[a]pyrene in a manner which is dependent on the dose of benzo[a]pyrene. The present study was designed to test whether UV-B irradiation renders mice susceptible to subcutaneous or intravenous injection of a regressor tumor induced by benzo[a]pyrene. The sources of UV-B irradiation were banks of 6 Westinghouse FS-40 sunlamps, situated 20 cm above the mouse cages. Female BALB/cAnNHsd received five 30-min dorsal UV-B radiation treatments per week for 12 weeks, resulting in a total dose of approx. 6.4 × 105 J m-2. Two to seven days after termination of UV treatments, syngeneic regressor tumor cells (BP2) induced by benzo[a]pyrene were injected subcutaneously or intravenously into irradiated mice and unirradiated controls. By 38 days post subcutaneous implantation, 24/30 and 3/30 BP2 implants were detectable in the irradiated and unirradiated mice, respectively. Ultraviolet irradiated mice were also unable to reject lung colonies resulting from intravenous administration of BP2 cells, although they were rejected by unirradiated mice. The mean number of lung colonies per mouse was 16- to 35-fold greater in UV irradiated mice than in unirradiated controls, at 14 to 17 days post injection. Thus, UV irradiation rendered mice, with no known exposure to benzo[a]pyrene, susceptible to a subcutaneous or intravenous injection of a regressor tumor induced by benzo[a]pyrene.  相似文献   

12.
The seeds of winter wheat were pretreated with three different doses of low-energy N+ beams, and its seedlings were subjected to UV-B irradiation (10.08?kJ?m?2?day?1) at three-leaves stage. The growth characteristic of seeds, the oxidative damage to membrane system induced by UV-B radiation, and the alleviating effects of N+ beams pretreatment to radiation damage were investigated. The results showed that the germination rate and seedling rate, respectively, increased 14.09?±?1.03 and 13.91?±?1.21?% compared with control (CK) at the dose of 4.0?×?1016 ions/cm2. When seedlings were exposed to UV-B radiation, the pretreatment method under the dose of 4.0?×?1016 ions/cm2 made the activity of peroxidase and superoxide dismutase increasing, the content of chlorophyll enhancing, but the content of malondialdehyde reducing significantly compared with that of the single UV-B radiation. Whereas, the activity of catalase irradiated by UV-B improved notably under the pretreatment dose of 8.0?×?1016 ions/cm2. In addition, after being irradiated with UV-B, the content of soluble protein and glutathione whose seeds were pretreated by the dose of 6.0?×?1016 ions/cm2 were higher than that of the single UV-B radiation. It was suggested that the suitable dose of low-energy ion beams pretreatment to wheat seeds could change its physiological characteristics at seedlings stage to alleviate the damage effects from UV-B radiation.  相似文献   

13.
UV-B effects on Antarctic Chlorella sp cells.   总被引:1,自引:0,他引:1  
Growth of Antarctic Chlorella sp cells was measured in cultures irradiated with 30 kJ m(-2) UV-B (280-320 nm). The specific growth rate immediately after the lag phase was 0.36+/-0.06 and 0.26+/-0.03 day(-1) for unirradiated cultures and cultures irradiated with UV-B, respectively, UV-B irradiation significantly decreased ascorbate content by 54.5%, and increased the ascorbyl radical content/ascorbate content ratio by 2.25-fold in algae cultures in log phase. UV-B exposure significantly decreased by 95, 62 and 71% the content of alpha-tocopherol, beta-carotene and total thiols, respectively, in cells in log phase of development. The cellular content of alpha-tocopherol, beta-carotene and total thiols was reduced by 78, 43 and 44%, respectively in stationary phase, as compared to the antioxidant content in the cells during log phase of development. UV-B exposure reduced the content of alpha-tocopherol and total thiols in stationary phase of development by 64 and 91%, respectively, as compared to unirradiated cells. The content of beta-carotene in stationary phase was not affected by UV-B exposure. The results presented here suggest that increased UV-B radiation was responsible for the development of oxidative stress conditions, assessed as the ascorbyl radical content/ascorbate content ratio, in Antarctic Chlorella sp cells. Moreover, a significant decrease in the content of both lipid and water soluble antioxidants might contribute to establish oxidative stress in the cells.  相似文献   

14.
Ciprofloxacin is a widely used fluoroquinolone drug with broad spectrum antibacterial activities. Clinical experience has shown incidences of adverse effects related to skin, hepatic, central nervous system, gastrointestinal and phototoxicity. India is a tropical country and sunlight is abundant throughout the day. In this scenario exposure to ambient levels of ultraviolet radiation (UV-R) in sunlight may lead to harmful effects in ciprofloxacin users. Phototoxicity assessment of ciprofloxacin was studied by two mouse fibroblast cell lines L-929 and NIH-3T3. Generation of reactive oxygen species (ROS) like singlet oxygen (1O2), superoxide anion radical (O2*-) and hydroxyl radical (*OH) was studied under the exposure of ambient intensities of UV-A (1.14, 1.6 and 2.2 mW cm(-2)), UV-B (0.6, 0.9 and 1.2 mW cm(-2)) and sunlight (60 min). The drug was generating 1O2, O2*- and *OH in a concentration and dose-dependent manner. Sodium azide (NaN3) and 1,4-diazabicyclo 2-2-2-octane (DABCO) inhibited the generation of 1O2. Superoxide dismutase (SOD) inhibited 90-95% O2*- generation. The drug (5-40 microg mL(-1)) was responsible for linoleic acid peroxidation. Quenching study of linoleic acid peroxidation with SOD (25 and 50 U mL(-1)) confirms the involvement of ROS in drug-induced lipid peroxidation. The generation of *OH radical was further confirmed by using specific quenchers of *OH such as mannitol (0.5 M) and sodium benzoate (0.5 M). 2'-deoxyguanosine (2'-dGuO) assay and linoleic acid peroxidation showed that ROS were mainly responsible for ciprofloxacin-sensitized photo-degradation of guanine base. L-929 cell line showed 29%, 34% and 54% reduced cell viability at higher drug concentration (300 microg mL(-1)) under UV-A, UV-B and sunlight, respectively. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay in NIH-3T3 cell line at higher drug concentration (300 microg mL(-1)) showed a decrease in cell viability by 54%, 56% and 59% under UV-A, UV-B and sunlight, respectively. Results of neutral red uptake assay (NRU) in L-929 cell line were in accordance with MTT assay. The NIH-3T3 cell line showed a higher photosensitizing potential than L-929. The phototoxicity end point shows a time- and concentration-dependent statistically significant (P<0.001) damage. Ciprofloxacin produced ROS by Type I and Type II photodynamic reactions, interacted with nucleic acid moiety and inhibited cell viability. Further, UV-induced photo-peroxidation of linoleic acid accorded the involvement of ROS in the manifestation of drug phototoxicity. Appearance of ciprofloxacin-induced phototoxicity at the ambient level of sunlight is a real risk for the people of India and for those of other tropical countries. We suggest that sunlight exposure should be avoided (especially peak hours) during ciprofloxacin treatment.  相似文献   

15.
The properties of microsomal membranes in spring wheat leaves (Triticum aestivum L. cv. Ganlong No. 92-005) exposed to (0) control, 8.64 (T1) and 11.2 kJ m(-2) day(-1) (T2) biologically effective UV-B irradiation (UV-B(BE)) were studied under greenhouse conditions. These irradiance levels correspond to a decrease in the stratospheric ozone of approximately 12.5 and 20%, respectively, for a clear solstice day at Lanzhou (36.04 degrees N, 1550 m), China. Compared with controls, the content of malondialdehyde (MDA) increased by 70.8% in T1 and 83.8% in T2 on the 7th day of the radiation, and the IUFA (index of unsaturated fatty acids) decreased, indicating peroxidation of lipid acids. Simultaneously, a drastic decrease of phospholipid content after 21 days and an increase of membrane lipid microviscosity on UV-B irradiation were also found, suggesting a reduction in the fluidity of membrane lipids. Ethylene emission by the microsomal membrane, in the presence of exogenous 1-aminocyclopropane-1-carboxylic acid was higher in the wheat seedlings after 7, 14 and 21 days' irradiation than in the controls. These changes were correlated with a rise in lipoxygenase activity. Membrane-bound enzymes (Ca2+ -ATPase and Mg2+ -ATPase) were promoted by UV radiation in the first 7 days and significantly decreased after 14 and 21 days' treatment in comparison to control. Our results suggest that UV-B radiation may cause changes in structural complexity and function of microsomal membranes in spring wheat leaves.  相似文献   

16.
Several corneal pathologies are characterized by the presence of reactive oxygen species (ROS); therefore, we evaluated the protection afforded by pirenoxine and melatonin to corneal cell culture and whole rabbit cornea from ultraviolet exposure and other oxidant systems. Rabbit cornea cell (SIRC) plates and whole corneas were exposed to UV-B (80 or 800 mJ/cm2) or incubated with fMLP-stimulated autologous macrophages, in the presence or absence of pirenoxine or melatonin (10(-5) M). The protective activity of compounds was assessed by measuring superoxide anion formation, inhibition of oxidation and mitochondrial viability. Moreover the ex vivo protective effect of pirenoxine and melatonin was verified in the whole cornea submitted to UV-B exposure in vitro. Our experimental data demonstrate that pirenoxine and melatonin were able to inhibit the superoxide formation and oxidative effect in cell culture and whole rabbit corneas submitted to UV-B exposure or to incubation with fMLP-stimulated autologous macrophages. Mitochondrial viability was restored in epithelial cells of rabbit cornea but not in SIRCs. Moreover, both compounds are also able to increase ex vivo epithelial corneal cell defences against the in vitro UV-B induced lipid peroxidation.  相似文献   

17.
UV light leads to release of different secretory factors from irradiated cells of which some of them have been characterized. We have reported earlier that cells exposed to the supernatant medium from irradiated cells were resistant to killing by some genotoxic agents. In this study, we present our finding that demonstrates DNA damage induced by UV or H(2)O(2) is lowered on prior exposure to the UV released factors (UVRF). Production of ROS in cells and lipid peroxidation was also lowered. It was found that treatment of unexposed cells with UVRF present in the supernatant medium altered the antioxidant defense activity in cells. Significant was the increase in catalase (CAT) and Cu-Zn superoxide dismutase (SOD) activity, whereas glutathione peroxidase (GPx) and reduced glutathione (GSH) levels remained unaffected. Cells exposed to UVRF prior to UV or H(2)O(2) treatment also experienced such upregulation; however, the remarkable increase in the GPx activity exhibited by these cells was not observed in cells exposed to H(2)O(2) or UV alone. It appears that exposure to UVRF tinkered with antioxidant defense in cells to facilitate its proliferation upon assault by an agent that can produce oxidative damage.  相似文献   

18.
This study examines the effects of natural solar radiation on the metal-binding capacity of dissolved organic matter (DOM). Newington Bog water (35.5 mg L−1 dissolved organic carbon [DOC]) was irradiated for 20 days under UV-B lamps in the laboratory and under natural solar radiation. In the presence of irradiated DOM, IC50 (contaminant concentration required to reduce algal growth by 50%) was significantly decreased with UV-B treatment for four metals: Pb, 64%; Cu, 63%; Ni, 35% and Cd, 40%. Solar radiation also significantly decreased IC50 of Pb (58%) and Cu (49%), DOC concentration (11%), DOM fluorescence (DOMFL, 33%) and DOC-specific UV absorbance. Further experiments on Raisin River water (20.7 mg DOC L−1) exposed to 20 days of artificial UVA and UV-B radiation produced significant decreases in IC50 for Cu (48%) with UV-A and for Pb (43%) with UV-B. DOC concentration was decreased 20% by UV-B and 24% by UV-A. DOMFL decreased 51.5% in the first 5 days of UV-A exposure, an effect that was not observed with the UV-B treatment. The UV-A treatment decreased UV absorbance more at longer wavelengths and over a broader wavelength band than did the UV-B treatment. Change in toxicity with UV irradiation was inconsistent among the metals tested in this study, indicating that some organic metal-binding ligands were more quickly removed or altered than others. The DOM remaining after irradiation appears to be qualitatively different from the unirradiated DOM. The much greater irradiance of UV-A makes its contribution to the removal and/or alteration of DOM at least as important as the influence of higher energy UV-B.  相似文献   

19.
Evidence is mounting that UV-B and UV-A radiation affect skin differently in responses as diverse as erythema and elastosis. We found in this study that collagen metabolism was also differentially affected. Albino hairless mice were irradiated with two UV-A sources: (1) UVASUN 3000 (340-400 nm) for cumulative exposures of 4000 and 8000 J/cm2; (2) a xenon solar simulator filtered to provide full spectrum UV-A (320-400 nm) and long wavelength UV-A (335-400 nm) for cumulative exposures of 3000 and 4000 J/cm2 respectively. Collagen was isolated from other skin proteins by acid extraction, pepsin digestion and salt precipitation. Collagen types I and III were separated by interrupted gel electrophoresis. Ultraviolet-A rendered the collagen highly resistant to pepsin digestion. In age-matched controls only 16-18% of the total collagen remained insoluble, whereas in long wavelength UV-A-irradiated skins the insoluble fraction was as high as 87%. A dose response was noted at 4000 and 8000 J/cm2 as delivered by the UVASUN. Recovery of collagen from the pepsin soluble fraction was low in all UV-A groups and the amount of type III so small that determination of ratios of type III to I collagen was unreliable. These results suggest that chronic UV-A radiation may increase cross-linking of dermal collagen.  相似文献   

20.
The effects of UV-B radiation on photosynthesis, growth and cannabinoid production of two greenhouse-grown C. sativa chemotypes (drug and fiber) were assessed. Terminal meristems of vegetative and reproductive tissues were irradiated for 40 days at a daily dose of 0, 6.7 or 13.4 kJ m-2 biologically effective UV-B radiation. Infrared gas analysis was used to measure the physiological response of mature leaves, whereas gas-liquid chromatography was used to determine the concentration of cannabinoids in leaf and floral tissue.
There were no significant physiological or morphological differences among UV-B treatments in either drug- or fiber-type plants. The concentration of Δ9-tetrahydrocannabinol (Δ9-THC), but not of other cannabinoids, in both leaf and floral tissues increased with UV-B dose in drug-type plants. None of the cannabinoids in fiber-type plants were affected by UV-B radiation.
The increased levels of Δ9-THC in leaves after irradiation may account for the physiological and morphological tolerance to UV-B radiation in the drug-type plants. However, fiber plants showed no comparable change in the level of cannabidiol (a cannabinoid with UV-B absorptive characteristics similar to Δ9 THC). Thus the contribution of cannabinoids as selective UV-B filters in C. sativa is equivocal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号