首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Convectional, sedimentation, and drying dissipative structures of black tea with and without cream were studied in a tea cup, a cover glass, a watch glass and a glass dish on macroscopic and microscopic scales. The convectional patterns were vigorous and irregular at the initial stage but soon highly distorted Bernard cells grew. The global integrated flows of the tea particles coated with cream at the air–suspension interface were observed vaguely from the central area toward outside edge at the initial stage in a tea cup and a large watch glass, but the flow direction turned oppositely from the outside to the central area. At the similar time, the short and few spoke lines appeared at the outside edge and grew long toward the central area. Then, the cooperative formation of clusters and bundles of the spoke lines took place at the middle and final convectional stages, and then the dynamic sedimentation patterns appeared. The drying patterns of tea with and without cream were composed of the broad ring at the outside edge and a round hill accompanied sometimes with the bundles of spoke lines. These features are consistent with those of suspensions of non-spherical particles. The pinning effect is not always supported by this work, but importance of the gravitational and Marangoni convectional flows is proposed instead. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Drying patterns of aqueous solutions of sodium salt of deoxyribonucleic acid (NaDNA) were studied on a cover glass, a watch glass, and a Petri glass dish at room temperature. Orientation of the rod-like single crystals of NaDNA molecules in the radial direction was observed especially at low polymer concentrations. The ratios of the size of the broad ring against initial size of the liquid on a cover glass and a watch glass were very small between 0.05 and 0.1 compared with those of the typical polyelectrolytes. Main cause is the compact conformation of NaDNA forming single or double stranded helix structures in the dried film. Microscopic drying patterns were long rods accompanied with the many short rods especially on a cover glass. Thick and short rods and dendritic crystals were fogrmed at the inward and outward areas of the dried films, respectively, on a watch glass and a Petri glass dish. Rod-like and dendritic crystals resembled the distorted hedrite and/or spherulite structures. Dissipative crystallization such as the orientation and accumulation of the single crystals of NaDNA were observed and the importance of the convectional and sedimentation processes was demonstrated during the course of crystallization.  相似文献   

3.
4.
Summary: Convectional, sedimentation and drying dissipative patterns during the course of dryness of suspensions and solutions are reviewed. The whole processes of convection were analyzed in the seven steps: irregular circulation accompanied with the upward heat transportation, global convectional flow from the central area toward outside edge at the surface layers of liquid, cooperative formation of distorted Benard cells, reversal of global flow of convection, growing of the spoke lines from the outside edge toward central area at the liquid surface layers, cluster and further bundle formation of the spoke lines, and the convectional flow by the pinning effect. The sedimentary colloidal particles were suspended above the substrate by the electric double layers and moved by the balancing of the external force fields including convectional flow and sedimentation. Principal macroscopic drying patterns are broad rings and spoke lines. Microscopic patterns such as star, needle, street road, string and cross-like are formed. The stratified structures form from micro to macro scales. Information on the size, shape, conformation and/or flexibility of particles or polymers is transferred cooperatively, and further accompanied with the amplification and selection processes during the course of dryness.  相似文献   

5.
The sedimentation and drying dissipative structural patterns were formed during the course of drying ternary mixtures of colloidal silica spheres of 183 nm, 305 nm, and 1.205 μm in diameter in aqueous suspension on a watch glass, a glass dish, and a cover glass. The patterns were observed by closed-up pictures, metallurgical optical microscopy, 3D profile microscopy, reflection spectroscopy and AFM images. The concentrations of the three spheres ranged from 0.0023 to 0.0128 keeping the same concentrations for each spheres. Broad ring-like sedimentation patterns were formed within a short time in suspension state especially in a glass dish. In a watch glass, colorful three layered ring-like drying patterns were observed and composed of the outer, middle and inner layers of small, medium, and large spheres, respectively. The three colored segregated layers were formed by the balancing between the outward convectional flow and the inward sedimentation of spheres. In a glass dish, wave-like macroscopic drying patterns were observed in the intermediate areas between the outside edge of the broad ring at the central area and the inner wall of the cell especially at low sphere concentrations. The size of the broad ring at the central area increased as sphere concentration increased. On a cover glass, size segregation also took place, i.e., small, medium, and large spheres located at the outer, medium, and central areas, though these segregations were not so complete compared with those on a watch glass.  相似文献   

6.
Sedimentation and drying dissipative patterns formed in the course of drying green tea (Ocha) have been studied in tea cup (Ochawan), glass dish, polystyrene dish, and watch glass. The broad-ring patterns are formed within several tens of minutes in suspension state by the convectional flow of water and colloidal particles of green tea (7 μm in mean size and 5 μm in its dispersion from the mean size). Formation of the broad-ring patterns is retarded when a tea cup is covered with a watch glass, which demonstrates the important role of the convectional flow of tea particles and water induced by the evaporation of water at the air-suspension interface under the gravity. The sedimentary particles are suspended above the substrate plate and always move by the convectional flow of water. The broad-ring patterns become sharp just before the solidification occurs. The broad rings are formed even in an inclined glass dish, though the rings are transformed slightly, which demonstrates the strong convectional flow of the particles. The drying broad rings and the microscopic fine structures are formed in the solidification processes on the bases of the convectional and sedimentation patterns in suspension state.  相似文献   

7.
Convectional, sedimentation, and drying dissipative structural patterns formed during the course of drying aqueous colloidal crystals of silica spheres (183 nm in diameter) have been studied in a glass dish and a watch glass. Spoke-like convectional patterns were observed in a watch glass. The broad ring sedimentation patterns formed especially in a glass dish within 30–40 min in suspension state by the convectional flow of water and colloidal spheres. The macroscopic broad ring drying patterns formed both in a glass dish and a watch glass. The ratio of the broad ring size in a glass dish against the initial size of suspension, i.e., inner diameter of the glass dish, d f/d i, in this work, were compared with previous work of other silica spheres having sizes of 305 and 560 nm and 1.2 μm in diameter. The d f/d i values in a glass dish increased as sphere concentration increased, but were rather insensitive to colloidal size. The d f/d i values on a watch glass also increased as sphere concentration increased, and further increased as sphere size decreased. Segregation effect by sphere size in a watch glass takes place by the balancing between the upward convectional flow of spheres in the lower layers of the liquid and the downward sedimentation of spheres. Colorful microscopic drying patterns formed both in a glass dish and a watch glass.  相似文献   

8.
Convectional, sedimentation, and drying dissipative structural patterns formed in the course of drying ethanol suspensions of colloidal silica spheres (110 nm in diameter) were studied in a glass dish and a watch glass. Vigorous cell convectional flow was observed with the naked eye, and the patterns changed dynamically with time. Broad-ring-like sedimentation patterns were observed in the suspension state just before the suspension was dried up, and the principal macroscopic patterns of the drying patterns were also broad-ring, though the colorful and fine microscopic structures were observed from optical microscopy.  相似文献   

9.
The sedimentation and drying dissipative structural patterns were formed during the course of drying binary mixtures among colloidal silica spheres of 183 nm, 305 nm, and 1.205 μm in diameter in aqueous suspension on a watch glass, a glass dish, and a cover glass, respectively. The broad ring-like sedimentation patterns were formed within several hours in suspension state for all the substrates used. Colorful macroscopic broad ring-like drying patterns were formed for the three substrates. In a watch glass, macroscopic drying patterns were composed of the outer and inner layers of small and large spheres, respectively. The two colored layers were ascribed to the Bragg diffractions of light by the dried colloidal crystals of the corresponding spheres. The width ratio of the layers changed in proportion to the mixing ratio of each spheres. In a glass dish, wave-like macroscopic drying patterns were observed in the intermediate areas between the outside edges of the broad ring and the inner wall of the cell. On a cover glass, the sphere mixing ratios were analyzed from the widths of the drying broad rings of the small spheres at the outside edge. High and distinct broad rings of small spheres and the low and vague broad one formed at the outer edges and in the inner area, respectively. Drying dissipative pattern was clarified to be one of the novel analysis techniques of colloidal size in binary colloidal mixtures.  相似文献   

10.
Sedimentation and drying dissipative structural patterns formed in the course of drying colloidal silica spheres (305 nm in diameter) in aqueous suspension have been studied in a glass dish and a watch glass. The broad ring sedimentation patterns formed within several tenth minutes in suspension state by the convectional flow of water and colloidal spheres. The sedimentary spheres always moved by the convectional flow of water, and the broad ring patterns became sharp with time. The width of the broad rings was sensitive to the change in the room temperature and/or humidity. In other words, the patterns became sharp or vague when the room parameters decreased or increased. Colorful macroscopic drying structures were composed of a broad ring and the wave-formed patterns. Iridescent colored fine patterns formed in the solidification processes on the bases of the sedimentation patterns. Beautiful drying patterns were observed for the suspension mixtures of CS300 and NaCl, and were different from the structures of CS300 or NaCl individuals, which support the synchronous cooperative interactions between the colloidal spheres and the salt.  相似文献   

11.
The formation of multiring deposits of poly(2-vinylpyridine) (P2VP) from the evaporation of a P2VP-(2,6-lutidine + water) drop on a glass substrate does not conform to the conventional pinning-depinning mechanism. Instead, ringlike deposits are formed when the droplet undergoes several cycles of spreading and receding where, for each spreading event, a P2VP ridge is formed at the contact line when the polymer flows toward the outward advancing edge. The complex interplay between an outward solutal-Marangoni flow due to a higher concentration of the polymer at the contact line and an inward solvent-Marangoni flow arising from the differences in volatilities and surface tensions of the pure solvent components plays an important role in enhancing the droplet spreading rate. The newly discovered surface patterning mechanism has important implications in the development of novel techniques for inducing self-assembly of functional materials from evaporating drops.  相似文献   

12.
Macroscopic and microscopic drying patterns were observed on a cover glass, a watch glass, and a Petri glass dish during dryness of aqueous suspensions of spindle-shaped particles of hematite coated with polymer brush (SHB). Outer and inner broad rings formed and the spoke-lines appeared especially on a watch glass at the intermediate initial concentration of SHB. Cooperative drying processes of the convection, sedimentation, and solidification were supported also for the anisotropic particles. Most of the long axes of SHB particles distributed parallel to the substrate plane. There appeared the microscopic alignment of the several ten micrometers similar-sized aggregates composed of the SHB particles. The parallel and/or flower-like (or spoke-like) arrangements of SHB particles were observed in the scanning electron microscopy. Effective shape of SHB particles including the electrical double layers during the convection flow processes are deduced to be near spherical. However, the effective shape came to be spindle-like during the sedimentary and solidification processes by the thinning of the double layers. The distorted paralleled and/or flower-like alignments of SHB particles were observed in the dried film.  相似文献   

13.
The sedimentation and drying dissipative structural patterns formed during the course of drying colloidal silica spheres (CS550, 560 nm in diameter) in an aqueous suspension have been studied in a glass dish and a watch glass. Broad ring patterns were formed within 20 min in the suspension state by the convectional flow of the colloidal spheres and water. The sedimentary spheres always moved by the convectional flow of water, and the broad ring patterns became sharp with time. The sharpness of the broad rings was sensitive to the change in the room temperature and/or humidity. Colorful macroscopic structures were composed of the broad ring and wave-like patterns, and further colorful and beautiful microscopic fine patterns formed during the solidification processes based on the convectional and sedimentation structures. The drying patterns of the colloidal suspensions containing sodium chloride were different from the structures of CS550 or sodium chloride individuals, which support the synchronous cooperative interactions between the colloidal spheres and the salts.  相似文献   

14.
Sedimentation and drying dissipative structural patterns formed in the course of drying aqueous suspensions of colloidal silica spheres (1.2 μm in diameter) were observed in the various sizes of watch glasses. The macroscopic broad ring patterns were formed on the inner inclined watch glass in suspension state within a short time after suspension was set. The important role of the convectional flow of water and colloidal spheres for the pattern formation is supported. The influence of sodium chloride was also studied. It was clarified that the sedimentary spheres move toward upper and outer edges along the inclined cell wall by the cell convection and hence the patterns are formed by the balancing between the outside movement and the downward sedimentation of the spheres. Beautiful microscopic drying patterns were also observed from the optical microscopy.  相似文献   

15.
Macroscopic and microscopic patterns during the course of dryness of aqueous solution in sodium salts of hyaluronic acid (NaHLA) were observed on a cover glass, a watch glass, and a Petri glass dish. Dendritic and rod-like microscopic patterns, which are similar to those of sodium salts of carboxymethyl cellulose, were observed for NaHLA especially on a cover glass and a watch glass. The microscopic patterns of NaHLA are supported to be originated from the hexose groups of polysaccharides, though the similar dendritic patterns are also observed for some of polynucleotides, sodium salts of deoxyribonucleic acid, and potassium salts of poly (riboadenylic acid), for example. Macroscopic broad ring size decreased substantially from the initial size of liquid and decreased slightly as polymer concentration decreased. These observations are consistent with existence of the rather strong interpolymer affinitive forces during the course of dryness. In the coexistence of sodium chloride, microscopic dendritic patterns grew large especially on a cover glass and a watch glass, which was so often observed for polysaccharides examined hitherto. Drying patterns are clarified to be formed by the successive and cooperative processes of evaporation, convection, sedimentation, and solidification.  相似文献   

16.
Macroscopic and microscopic dissipative structural patterns formed in the course of drying the deionized aqueous colloidal crystal suspensions of silica spheres (diameter: 103 nm) on a cover glass have been observed. Spoke-like and ring-like patterns are formed in the macroscopic scale; the former is the crack in the sphere film and the latter is the hill accumulated with spheres formed around the outside edge. The neighbored inter-spoke angle, thickness of the film, and other morphological parameters have been discussed as a function of sphere concentration, concentration of sodium chloride, and the inclined angle of the cover glass. Fractal patterns of the mud cracks are observed in the microscopic scale. Capillary forces between spheres at the air-liquid surface and the relative rates between the water flow at the drying front and the convection flow of spheres are important for the pattern formation. Electronic Publication  相似文献   

17.
We fabricated graphene oxide (GO) films on glass substrates by blade coating a lyotropic GO liquid crystal dispersion. Substrate temperature and blading speed were precisely controlled to manipulate the surface morphologies of GO films. The temperature and blade speed influenced the drying rate of film and the amount GO dispersion supplied. By controlling these parameters, film-thickness modulation and three types of surface wrinkle patterns were selectively achieved. We also plotted the wrinkle patterns diagram as functions of the film fabrication conditions. The films exhibited different optical anisotropies depending on wrinkle patterns. GO films with controlled wrinkles can be used as electrodes for supercapacitor applications owing to the large surface areas.  相似文献   

18.
Macroscopic and microscopic drying patterns were observed on a cover glass, a watch glass, and a Petri glass dish during the course of dryness of aqueous solutions of α-cyclodextrin (αCD), β-cyclodextrin (βCD), and γ-cyclodextrin (γCD), i.e., cone shape oligomers of polysaccharide. For all CD molecules, two kinds of macroscopic patterns, outside and inner broad rings and spoke lines formed. Multi-broad rings were formed for βCD in the inner region of the main broad ring at the outside edge especially at the high concentrations. Cooperative drying processes of the convection, sedimentation, and solidification were clarified. Microscopic drying patterns showing the formation of rod-like and/or sward-like crystals were observed mainly in the direction along the spoke lines. The microscopic patterns of βCD were similar to those of some of polysaccharides and polynucleotides the authors studied previously. α- and γ-cyclodextrins were slightly hygroscopic, and clear-cut drying patterns were not observed.  相似文献   

19.
The effects of diffusion out of and into drops undergoing equatorial collision in laminar shear flow were studied. With an electric field perpendicular to the direction of flow, diffusion into undeformed drops enhanced coalescence, while diffusion from the drops inhibited it. With marked outward diffusion, drops having a collision angle greater than 83° assumed a stable alignment in opposition to the velocity gradient for several minutes and then rotated to become a permanent head-on collision doublet. With inward diffusion the separation of drop centers increased along the paths of approach and the apparent angle of collision decreased. The phenomena were explained qualitatively on the basis of surface flow arising from concentration gradients at the drop surfaces. Stable multiplets were formed on collision of highly deformed drops as a result of hydrodynamic forces both with and without diffusion.  相似文献   

20.
Sedimentation and drying dissipative structural patterns formed in the course of drying colloidal silica spheres (1.2 μm in diameter) in aqueous suspension have been studied in a glass dish and a polystyrene dish. The broad ring patterns are formed within a short time in suspension state by the convection flow of water and colloidal spheres. The broad ring patterns are not formed when a dish is covered with a cap, which demonstrates the important role of the convectional flow of silica spheres and water accompanied with the evaporation of water on the air-suspension interface. The sedimentary spheres always move by the convectional flow of water, and the broad ring patterns became sharp with time. Broad ring and microscopic fine structures are formed in the solidification processes on the bases of the convectional and sedimentation patterns. Drying patterns of the colloidal suspensions containing sodium chloride are star-like ones, which strongly supports the synchronous cooperative interactions between the salt and colloidal spheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号