首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Symmetry plays fundamental role in physics and the nature of symmetry changes in non-Hermitian physics.Here the symmetry-protected scattering in non-Hermitian linear systems is investigated by employing the discrete symmetries that classify the random matrices.The even-parity symmetries impose strict constraints on the scattering coefficients:the time-reversal(C and K) symmetries protect the symmetric transmission or reflection;the pseudo-Hermiticity(Q symmetry) or the inversion(P) symmetry protects the symmetric transmission and reflection.For the inversion-combined time-reversal symmetries,the symmetric features on the transmission and reflection interchange.The odd-parity symmetries including the particle-hole symmetry,chiral symmetry,and sublattice symmetry cannot ensure the scattering to be symmetric.These guiding principles are valid for both Hermitian and non-Hermitian linear systems.Our findings provide fundamental insights into symmetry and scattering ranging from condensed matter physics to quantum physics and optics.  相似文献   

2.
Tianyu Li  Yong-Sheng Zhang  Wei Yi 《中国物理快报》2021,(3):1-6,中插1-中插3
We construct a two-dimensional, discrete-time quantum walk, exhibiting non-Hermitian skin effects under openboundary conditions. As a confirmation of the non-Hermitian bulk-boundary correspondence, we show that the emergence of topological edge states is consistent with the Floquet winding number, calculated using a non-Bloch band theory, invoking time-dependent generalized Brillouin zones. Further, the non-Bloch topological invariants associated with quasienergy bands are captured by a non-Hermitian local Chern marker in real space, defined via the local biorthogonal eigenwave functions of a non-unitary Floquet operator. Our work aims to stimulate further studies of non-Hermitian Floquet topological phases where skin effects play a key role.  相似文献   

3.
We study the complex Berry phases in non-Hermitian systems with parity- and time-reversal $\left({ \mathcal P }{ \mathcal T }\right)$ symmetry. We investigate a kind of two-level system with ${ \mathcal P }{ \mathcal T }$ symmetry. We find that the real part of the the complex Berry phases have two quantized values and they are equal to either 0 or π, which originates from the topology of the Hermitian eigenstates. We also find that if we change the relative parameters of the Hamiltonian from the unbroken-${ \mathcal P }{ \mathcal T }$-symmetry phase to the broken-${ \mathcal P }{ \mathcal T }$-symmetry phase, the imaginary part of the complex Berry phases are divergent at the exceptional points. We exhibit two concrete examples in this work, one is a two-level toys model, which has nontrivial Berry phases; the other is the generalized Su–Schrieffer–Heeger (SSH) model that has physical loss and gain in every sublattice. Our results explicitly demonstrate the relation between complex Berry phases, topology and ${ \mathcal P }{ \mathcal T }$-symmetry breaking and enrich the field of the non-Hermitian physics.  相似文献   

4.
Two non-Hermitian PT-symmetric Hamiltonian systems are reconsidered by means of the algebraic method which was originally proposed for the pseudo-Hermitian Hamiltonian systems rather than for the PT-symmetric ones.Compared with the way converting a non-Hermitian Hamiltonian to its Hermitian counterpart,this method has the merit that keeps the Hilbert space of the non-Hermitian PT-symmetric Hamiltonian unchanged.In order to give the positive definite inner product for the PT-symmetric systems,a new operator V,instead of C,can be introduced.The operator V has the similar function to the operator C adopted normally in the PT-symmetric quantum mechanics,however,it can be constructed,as an advantage,directly in terms of Hamiltonians.The spectra of the two non-Hermitian PT-symmetric systems are obtained,which coincide with that given in literature,and in particular,the Hilbert spaces associated with positive definite inner products are worked out.  相似文献   

5.
张舒迈  金亮  宋智 《中国物理 B》2022,31(1):10312-010312
We investigate the topological properties of a trimerized parity–time(PT)symmetric non-Hermitian rhombic lattice.Although the system is PT-symmetric,the topology is not inherited from the Hermitian lattice;in contrast,the topology can be altered by the non-Hermiticity and depends on the couplings between the sublattices.The bulk–boundary correspondence is valid and the Bloch bulk captures the band topology.Topological edge states present in the two band gaps and are predicted from the global Zak phase obtained through the Wilson loop approach.In addition,the anomalous edge states compactly localize within two diamond plaquettes at the boundaries when all bands are flat at the exceptional point of the lattice.Our findings reveal the topological properties of the??PT-symmetric non-Hermitian rhombic lattice and shed light on the investigation of multi-band non-Hermitian topological phases.  相似文献   

6.
《Physics letters. A》2019,383(22):2567-2570
We consider an N-level non-Hermitian Hamiltonian with an exceptional point of order N. We define adiabatic equivalence in such systems and explore topological phase. We show that the topological exceptional states appear at the interface of topologically distinct systems. We discuss that topological states appear even in closed systems. We explore dynamical robustness of exceptional edge states.  相似文献   

7.
A perturbative form of a circular billiard with an off-centre flux line yields a non-Hermitian Hamiltonian with real spectrum. The spacing among neighbouring levels deviates from Poisson distribution (expected for integrable systems). The eigenfunctions exhibit directional property due to broken parity and time-reversal symmetries.  相似文献   

8.
Boxue Zhang 《中国物理 B》2022,31(7):70308-070308
Non-Hermitian models with real eigenenergies are highly desirable for their stability. Yet, most of the currently known ones are constrained by symmetries such as PT-symmetry, which is incompatible with realizing some of the most exotic non-Hermitian phenomena. In this work, we investigate how the non-Hermitian skin effect provides an alternative route towards enforcing real spectra and system stability. We showcase, for different classes of energy dispersions, various ansatz models that possess large parameter space regions with real spectra, despite not having any obvious symmetry. These minimal local models can be quickly implemented in non-reciprocal experimental setups such as electrical circuits with operational amplifiers.  相似文献   

9.
《Physics letters. A》2020,384(14):126285
We study classification of anti-Hermitian topological insulators based on the discrete symmetries: time-reversal, particle-hole and chiral symmetries. Contrary to the most general form of non-Hermitian systems, bulk boundary correspondence can hold in anti-Hermitian topological systems. We map a topologically nontrivial Hermitian Hamiltonians into an anti-Hermitian system and we show that the standard table of topological insulators can be used for anti-Hermitian Hamiltonians.  相似文献   

10.
杨孝森  曹阳  翟云佳 《中国物理 B》2022,31(1):10308-010308
We investigate novel features of three-dimensional non-Hermitian Weyl semimetals,paying special attention to the unconventional bulk-boundary correspondence.We use the non-Bloch Chern numbers as the tool to obtain the topological phase diagram,which is also confirmed by the energy spectra from our numerical results.It is shown that,in sharp contrast to Hermitian systems,the conventional(Bloch)bulk-boundary correspondence breaks down in non-Hermitian topological semimetals,which is caused by the non-Hermitian skin effect.We establish the non-Bloch bulk-boundary correspondence for non-Hermitian Weyl semimetals:the topological edge modes are determined by the non-Bloch Chern number of the bulk bands.Moreover,these topological edge modes can manifest as the unidirectional edge motion,and their signatures are consistent with the non-Bloch bulk-boundary correspondence.Our work establishes the non-Bloch bulk-boundary correspondence for non-Hermitian topological semimetals.  相似文献   

11.
Physical systems with gain and loss can be described by a non-Hermitian Hamiltonian, which is degenerated at the exceptional points(EPs).Many new and unexpected features have been explored in the non-Hermitian systems with a great deal of recent interest.One of the most fascinating features is that chiral state conversion appears when one EP is encircled dynamically.Here, we propose an easy-controllable levitated microparticle system that carries a pair of EPs and realize slow evolution of the Hamiltonian along loops in the parameter plane.Utilizing the controllable rotation angle, gain and loss coefficients, we can control the structure, size and location of the loops in situ.We demonstrate that, under the joint action of topological structure of energy surfaces and nonadiabatic transitions, the chiral behavior emerges both along a loop encircling an EP and even along a straight path away from the EP.This work broadens the range of parameter space for the chiral state conversion, and proposes a useful platform to explore the interesting properties of exceptional points physics.  相似文献   

12.
The symmetry of the time-independent Schrödinger equation is investigated in antiferromagnetic single crystals using the spinor representation for the electron. The one-particle Hamiltonian depends on the assumed rigid antiferromagnetic structure via the vector potential of the magnetic induction. The Pauli term and the spin-orbit term are taken into account as well as the crystal potential. It is shown how to find the Shubnikov space group relevant to the problem. A representation of the appropriate double group gives the symmetry group of the Hamiltonian. From the lattice periodicity of the Hamiltonian an analogue of the classical Bloch theorem is obtained. The symmetry group of the Hamiltonian is used to determine the symmetry properties of the energy bands. These symmetries are examined systematically for each type of Shubnikov space groups. Special attention is paid to the validity of the Kramers symmetry. In certain antiferromagnets, the energy bands are allowed by symmetry to have terms linear in k. Such a behaviour can have measurable consequences.  相似文献   

13.
14.
We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean–Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices.  相似文献   

15.
M. Courbage  B. Misra 《Physica A》1980,104(3):359-377
We extend to Bernoulli systems the explicit construction (elaborated previously for the baker transformation) of non-unitary, invertible transformations Λ, which associate Markovian processes admitting an H-theorem with the unitary dynamical group, through a similarity relation. We characterize the symmetries of the Bernoulli system as well as those of the associated Markov processes and provide examples of symmetry breaking under the passage, through a Λ transformation, from Bernoulli systems to stochastic Markov processes.  相似文献   

16.
For a quantum system governed by a non-Hermitian Hamiltonian, we studied the problem of obtaining an optimum Hamiltonian that generates nonunitary transformations of a given initial state into a certain final state in the smallest time τ. The analysis is based on the relationship between the states of the two-dimensional subspace of the Hilbert space spanned by the initial and final states and the points of the two-dimensional complex Bloch sphere.  相似文献   

17.
夏丽莉  陈立群 《中国物理 B》2012,21(7):70202-070202
The Noether conserved quantities and the Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices are studied. The generalized Hamiltonian equations of the systems are given on the basis of the transformation operators in the space of discrete Hamiltonians. The Lie transformations acting on the lattice, as well as the equations and the determining equations of the Lie symmetries are obtained for the nonholonomic Hamiltonian systems. The discrete analogue of the Noether conserved quantity is constructed by using the Lie point symmetries. An example is discussed to illustrate the results.  相似文献   

18.
梁辉强  李林虎 《中国物理 B》2022,31(1):10310-010310
We study topological properties of the one-dimensional Creutz ladder model with different non-Hermitian asymmetric hoppings and on-site imaginary potentials,and obtain phase diagrams regarding the presence and absence of an energy gap and in-gap edge modes.The non-Hermitian skin effect(NHSE),which is known to break the bulk-boundary correspondence(BBC),emerges in the system only when the non-Hermiticity induces certain unbalanced non-reciprocity along the ladder.The topological properties of the model are found to be more sophisticated than that of its Hermitian counterpart,whether with or without the NHSE.In one scenario without the NHSE,the topological winding is found to exist in a two-dimensional plane embedded in a four-dimensional space of the complex Hamiltonian vector.The NHSE itself also possesses some unusual behaviors in this system,including a high spectral winding without the presence of long-range hoppings,and a competition between two types of the NHSE,with the same and opposite inverse localization lengths for the two bands,respectively.Furthermore,it is found that the NHSE in this model does not always break the conventional BBC,which is also associated with whether the band gap closes at exceptional points under the periodic boundary condition.  相似文献   

19.
A new method is proposed to predict the topological properties of 1D periodic structures in wave physics, including quantum mechanics. From Bloch waves, a unique complex valued function is constructed, exhibiting poles and zeros. The sequence of poles and zeros of this function is a topological invariant that can be linked to the Berry–Zak phase. Since the characterization of the topological properties is done in the complex plane, it can easily be extended to the case of non-Hermitian systems. The sequence of poles and zeros allows to predict topological phase transitions.  相似文献   

20.
We provide a reviewlike introduction to the quantum mechanical formalism related to non-Hermitian Hamiltonian systems with real eigenvalues. Starting with the time-independent framework, we explain how to determine an appropriate domain of a non-Hermitian Hamiltonian and pay particular attention to the role played by PJ symmetry and pseudo-Hermiticity. We discuss the time evolution of such systems having in particular the question in mind of how to couple consistently an electric field to pseudo-Hermitian Hamiltonians. We illustrate the general formalism with three explicit examples: (i) the generalized Swanson Hamiltonians, which constitute non-Hermitian extensions of anharmonic oscillators, (ii) the spiked harmonic oscillator, which exhibits explicit super-symmetry, and (iii) the ?x 4-potential, which serves as a toy model for the quantum field theoretical ?4-theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号