首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Opportunistic pathogens exploit diverse strategies to sabotage host defenses. Pseudomonas aeruginosa secretes the CFTR inhibitory factor Cif and thus triggers loss of CFTR, an ion channel required for airway mucociliary defense. However, the mechanism of action of Cif has remained unclear. It catalyzes epoxide hydrolysis, but there is no known role for natural epoxides in CFTR regulation. It was demonstrated that the hydrolase activity of Cif is strictly required for its effects on CFTR. A small‐molecule inhibitor that protects this key component of the mucociliary defense system was also uncovered. These results provide a basis for targeting the distinctive virulence chemistry of Cif and suggest an unanticipated role of physiological epoxides in intracellular protein trafficking.  相似文献   

2.
3.
A family of fifteen glycoclusters based on a cyclic oligo‐(1→6)‐β‐D ‐glucosamine core has been designed as potential inhibitors of the bacterial lectin LecA with various valencies (from 2 to 4) and linkers. Evaluation of their binding properties towards LecA has been performed by a combination of hemagglutination inhibition assays (HIA), enzyme‐linked lectin assays (ELLA), and isothermal titration microcalorimetry (ITC). Divalent ligands displayed dissociation constants in the sub‐micromolar range and tetravalent ligands displayed low nanomolar affinities for this lectin. The influence of the linker could also be demonstrated; aromatic moieties are the best scaffolds for binding to the lectin. The affinities observed in vitro were then correlated with molecular models to rationalize the possible binding modes of these glycoclusters with the bacterial lectin.  相似文献   

4.
Multi-drug resistance (MDR) bacterial pathogens pose a threat to global health and warrant the discovery of new therapeutic molecules, particularly those that can neutralize their virulence and stop the evolution of new resistant mechanisms. The superbug nosocomial pathogen, Pseudomonas aeruginosa, uses a multiple virulence factor regulator (MvfR) to regulate the expression of multiple virulence proteins during acute and persistent infections. The present study targeted MvfR with the intention of designing novel anti-virulent compounds, which will function in two ways: first, they will block the virulence and pathogenesis P. aeruginosa by disrupting the quorum-sensing network of the bacteria, and second, they will stop the evolution of new resistant mechanisms. A structure-based virtual screening (SBVS) method was used to screen druglike compounds from the Asinex antibacterial library (~5968 molecules) and the comprehensive marine natural products database (CMNPD) (~32 thousand compounds), against the ligand-binding domain (LBD) of MvfR, to identify molecules that show high binding potential for the relevant pocket. In this way, two compounds were identified: Top-1 (4-((carbamoyloxy)methyl)-10,10-dihydroxy-2,6-diiminiodecahydropyrrolo[1,2-c]purin-9-yl sulfate) and Top-2 (10,10-dihydroxy-2,6-diiminio-4-(((sulfonatocarbamoyl)oxy)methyl)decahydropyrrolo[1,2-c]purin-9-yl sulfate), in contrast to the co-crystallized M64 control. Both of the screened leads were found to show deep pocket binding and interactions with several key residues through a network of hydrophobic and hydrophilic interactions. The docking results were validated by a long run of 200 ns of molecular dynamics simulation and MM-PB/GBSA binding free energies. All of these analyses confirmed the presence of strong complex formation and rigorous intermolecular interactions. An additional analysis of normal mode entropy and a WaterSwap assay were also performed to complement the aforementioned studies. Lastly, the compounds were found to show an acceptable range of pharmacokinetic properties, making both compounds potential candidates for further experimental studies to decipher their real biological potency.  相似文献   

5.
The galactopeptide dendrimer GalAG2 ((β‐Gal‐OC6H4CO‐Lys‐Pro‐Leu)4(Lys‐Phe‐Lys‐Ile)2Lys‐His‐Ile‐NH2) binds strongly to the Pseudomonas aeruginosa (PA) lectin LecA, and it inhibits PA biofilms, as well as disperses already established ones. By starting with the crystal structure of the terminal tripeptide moiety GalA‐KPL in complex with LecA, a computational mutagenesis study was carried out on the galactotripeptide to optimize the peptide–lectin interactions. 25 mutants were experimentally evaluated by a hemagglutination inhibition assay, 17 by isothermal titration calorimetry, and 3 by X‐ray crystallography. Two of these tripeptides, GalA‐KPY (dissociation constant (KD)=2.7 μM ) and GalA‐KRL (KD=2.7 μM ), are among the most potent monovalent LecA ligands reported to date. Dendrimers based on these tripeptide ligands showed improved PA biofilm inhibition and dispersal compared to those of GalAG2 , particularly G2KPY ((β‐Gal‐OC6H4CO‐Lys‐Pro‐Tyr)4(Lys‐Phe‐Lys‐Ile)2Lys‐His‐Ile‐NH2). The possibility to retain and even improve the biofilm inhibition in several analogues of GalAG2 suggests that it should be possible to fine‐tune this dendrimer towards therapeutic use by adjusting the pharmacokinetic parameters in addition to the biofilm inhibition through amino acid substitutions.  相似文献   

6.
The pathogen Pseudomonas aeruginosa produces over 50 different quinolones, 16 of which belong to the class of 2-alkyl-4-quinolone N-oxides (AQNOs) with various chain lengths and degrees of saturation. We present the first synthesis of a previously proposed unsaturated compound that is confirmed to be present in culture extracts of P. aeruginosa, and its structure is shown to be trans-Δ1-2-(non-1-enyl)-4-quinolone N-oxide. This compound is the most active agent against S. aureus, including MRSA strains, by more than one order of magnitude whereas its cis isomer is inactive. At lower concentrations, the compound induces small-colony variants of S. aureus, reduces the virulence by inhibiting hemolysis, and inhibits nitrate reductase activity under anaerobic conditions. These studies suggest that this unsaturated AQNO is one of the major agents that are used by P. aeruginosa to modulate competing bacterial species.  相似文献   

7.
Burkholderia cenocepacia is an opportunistic Gram-negative bacterium that causes infections in patients suffering from chronic granulomatous diseases and cystic fibrosis. It displays significant morbidity and mortality due to extreme resistance to almost all clinically useful antibiotics. The bacterial lectin BC2L-C expressed in B. cenocepacia is an interesting drug target involved in bacterial adhesion and subsequent deadly infection to the host. We solved the first high resolution crystal structure of the apo form of the lectin N-terminal domain (BC2L-C-nt) and compared it with the ones complexed with carbohydrate ligands. Virtual screening of a small fragment library identified potential hits predicted to bind in the vicinity of the fucose binding site. A series of biophysical techniques and X-ray crystallographic screening were employed to validate the interaction of the hits with the protein domain. The X-ray structure of BC2L-C-nt complexed with one of the identified active fragments confirmed the ability of the site computationally identified to host drug-like fragments. The fragment affinity could be determined by titration microcalorimetry. These structure-based strategies further provide an opportunity to elaborate the fragments into high affinity anti-adhesive glycomimetics, as therapeutic agents against B. cenocepacia.  相似文献   

8.
The emergence of resistant microbes threatens public health on our planet, and the emergence of resistant bacteria against the most commonly used antibiotics necessitates urgent alternative therapeutic options. One way to fight resistant microbes is to design new antimicrobial agents, however, this approach takes decades of research. An alternative or parallel approach is to target the virulence of bacteria with natural or synthetic agents. Active constituents from medicinal plants represent a wide library to screen for natural anti-virulence agents. Caraway is used as a traditional spice and in some medicinal applications such as carminative, antispasmodic, appetizer, and expectorant. Caraway essential oil is rich in terpenes that were previously reported to have antimicrobial activities. In our study, we tested the caraway essential oil in sub-inhibitory concentration as a virulence agent against the Gram-negative bacteria Pseudomonas aeruginosa. Caraway essential oil in sub-inhibitory concentration dramatically blocked protease activity, pyocyanin production, biofilm formation, and quorum sensing activity of P. aeruginosa. The gas chromatography–mass spectroscopy (GC-MS) profile of caraway fruit oil identified 13 compounds representing 85.4% of the total oil components with carvone and sylvestrene as the main constituents. In conclusion, caraway essential oil is a promising virulence-attenuating agent that can be used against topical infections caused by P. aeruginosa.  相似文献   

9.
《Analytical letters》2012,45(1):58-67
Abstract

A new method for the rapid identification and quantification of Pseudomonas aeruginosa using multichannel series piezoelectric quartz crystal (MSPQC) was proposed. The identification of P. aeruginosa was based on the development of acetamide broth, which can selective culture P. aeruginosa and performed perfectly in MSPQC. The quantitative detection of P. aeruginosa was based on the fact that the frequency detection time (FDT) detected by MSPQC in developed medium had a linear relationship with the logarithm of its initial concentration in the range of 10–108 colony ? forming units (cfu) ml–1 (R=?0.984). The detection limit was 10 cfu ml–1.  相似文献   

10.
11.
Anti‐infectious strategies against pathogen infections can be achieved through antiadhesive strategies by using multivalent ligands of bacterial virulence factors. LecA and LecB are lectins of Pseudomonas aeruginosa implicated in biofilm formation. A series of 27 LecA‐targeting glycoclusters have been synthesized. Nine aromatic galactose aglycons were investigated with three different linker arms that connect the central mannopyranoside core. A low‐nanomolar (Kd=19 nm , microarray) ligand with a tyrosine‐based linker arm could be identified in a structure–activity relationship study. Molecular modeling of the glycoclusters bound to the lectin tetramer was also used to rationalize the binding properties observed.  相似文献   

12.
13.
14.
《Analytical letters》2012,45(8):1287-1295
Abstract

The development of a piezoelectric immunosensor for the detection of Pseudomonas aeruginosa in milk and dairy samples was undertaken here. This was achieved primarily by optimising the system using ELISA, investigating capture, competitive and displacement assays. Results from ELISA supplied information on detection limits and linear ranges obtained with each assay. A displacement assay was chosen to be transferred to the piezoelectric system and the reduction in mass on the surface of the crystal due to antigen displacement was measured by recording the frequency changes of the quartz crystal microbalance. The linear range obtained was from 2x106 cell/ml to 1x108 cell/ml and the limit of detection was 100,000 cells. The system was also tested for cross reactivity with a non-specific antigen, Pseudomonas fluorescens.  相似文献   

15.
Quorum sensing (QS) is a population-density-dependent communication process of microorganisms to coordinate their activities by producing and detecting low-molecular-weight signal molecules. In pathogenic bacteria, the property controlled by QS is often related to infectivity, e.g., biofilm formation. Molecular encapsulation of the QS signals is an innovative method to prevent the signals binding to the receptors and to attenuate QS. Cyclodextrins (CDs) may form an inclusion complex with the signals, thus reducing the communication (quorum quenching, QQ). A systematic study was performed with α-, β-cyclodextrin, and their random methylated, quaternary amino and polymer derivatives to evaluate and compare their effects on the biofilm formation of Pseudomonas aeruginosa. To examine the concentration-, temperature- and time-dependency of the QQ effect, the CDs were applied at a 0.1–12.5 mM concentration range, and biofilm formation was studied after 6, 24, 48 and 72 h at 22 and 30 °C. According to the results, the QS mechanism was significantly inhibited; the size of the cavity, the structure of the substituents, as well as the monomeric or polymeric character together with the concentration of the CDs have been identified as key influencing factors of biofilm formation. Statistically determined effective concentration values demonstrated outstanding efficiency (higher than 80% inhibition) of α-CD and its random methylated and polymer derivatives both on the short and long term. In summary, the potential value of CDs as inhibitors of QS should be considered since the inhibition of biofilm formation could significantly impact human health and the environment.  相似文献   

16.
The aim of this work was to devise a one‐step purification procedure for monoclonal antibodies (MAbs) of IgG class by immobilized metal affinity chromatography (IMAC). Therefore, several stationary phases were prepared containing immobilized metal chelates in order to study the chromatographic behaviour of MAbs against wild‐type amidase from Pseudomonas aeruginosa. Such MAbs adsorbed to Cu(II), Ni(II), Zn(II) and Co(II)–IDA agarose columns. The increase in ligand concentration and the use of longer spacer arms and higher pH values resulted in higher adsorption of MAbs into immobilized metal chelates. The dynamic binding capacity and the maximum binding capacity were 1.33 ± 0.015 and 3.214 ± 0.021 mg IgG/mL of sedimented commercial matrix, respectively. A KD of 4.53 × 10−7 m was obtained from batch isotherm measurements. The combination of tailor‐made stationary phases of IMAC and the correct selection of adsorption conditions permitted a one‐step purification procedure to be devised for MAbs of IgG class. Culture supernatants containing MAbs were purified by IMAC on commercial‐Zn(II) and EPI‐30–IDA–Zn(II) Sepharose 6B columns and by affinity chromatography on Protein A‐Sepharose CL‐4B. This MAb preparation revealed on SDS–PAGE two protein bands with Mr of 50 and 22 kDa corresponding to the heavy and light chains, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The Pseudomonas aeruginosa PA1 strain, isolated from the water of oil production in Sergipe, Northeast Brazil, wasevaluated as a potential rhamnolipid type of biosurfactant producer. The production of biosurfactants was investigated using different carbon sources (n-hexadecane, paraffin oil, glycerol, and babassu oil) and inoculum concentrations (0.0016–0.008 g/L) The best results were obtained with glycerol as the substrate and an initial cell concentration of 0.004 g/L. AC:N ratio of 22.8 led to the greatest production of rhamnolipids (1700 mg/L) and efficiency (1.18 g of rhamnolipid/g of dry wt).  相似文献   

18.
Pseudomonas aeruginosa is an opportunistic pathogen causing life-threatening, hard-to-heal infections associated with the presence of a biofilm. Essential oils (EOs) are promising agents to combat pseudomonal infections because of the alleged antimicrobial activity of their volatile fractions and liquid forms. Therefore, the purpose of this paper was to evaluate the antibacterial efficacy of both volatile and liquid phases of seven EOs (thyme, tea tree, basil, rosemary, eucalyptus, menthol mint, lavender) against P. aeruginosa biofilm and planktonic cells with the use of a broad spectrum of analytical in vitro methods. According to the study results, the antibacterial activity of EOs in their liquid forms varied from that of the volatile fractions. Overall, liquid and volatile forms of rosemary EO and tea tree EO displayed significant antibiofilm effectiveness. The outcomes indicate that these particular EOs possess the potential to be used in the therapy of P. aeruginosa infections.  相似文献   

19.
Epithelial cell lines from several tissues show a differential sensitivity to Pseudomonas aeruginosa adherence. A549 (lung), HepG2 (liver) and Caco-2 (colon) cells presented an adhesion index of about 3, 1.5 and 5 CFU/cell, respectively, whereas Mz-Ch cell lines (gallbladder cholangiocytes) presented adhesion indexes up to 35. These variations could be associated with the variable amount of sialic acid in cell surface glycoconjugates. Moreover, the presence of free sialic acid in culture media induces the secretion by P. aeruginosa of a sialidase which is able to hydrolyze glycoconjugate-linked sialic acid. As shown with A549 cells, this specific hydrolysis increases bacterial adhesion, probably by unmasking new binding sites onto the cell surface.  相似文献   

20.
Quorum sensing (QS), a sophisticated system of bacterial communication that depends on population density, is employed by many pathogenic bacteria to regulate virulence. In view of the current reality of antibiotic resistance, it is expected that interfering with QS can address bacterial pathogenicity without stimulating the incidence of resistance. Thus, harnessing QS inhibitors has been considered a promising approach to overriding bacterial infections and combating antibiotic resistance that has become a major threat to public healthcare around the globe. Pseudomonas aeruginosa is one of the most frequent multidrug-resistant bacteria that utilize QS to control virulence. Many natural compounds, including furanones, have demonstrated strong inhibitory effects on several pathogens via blocking or attenuating QS. While the natural furanones show no activity against P. aeruginosa, furanone C-30, a brominated derivative of natural furanone compounds, has been reported to be a potent inhibitor of the QS system of the notorious opportunistic pathogen. In the present study, we assess the molecular targets and mode of action of furanone C-30 on P. aeruginosa QS system. Our results suggest that furanone C-30 binds to LasR at the ligand-binding site but fails to establish interactions with the residues crucial for the protein’s productive conformational changes and folding, thus rendering the protein dysfunctional. We also show that furanone C-30 inhibits RhlR, independent of LasR, suggesting a complex mechanism for the agent beyond what is known to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号