首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proton-conducting materials in the solid state have received immense attention for their role as electrolytes in proton-exchange membrane fuel cells. Recently, crystalline materials—metal–organic frameworks (MOFs), hydrogen-bonded organic frameworks (HOFs), covalent organic frameworks (COFs), polyoxometalates (POMs), and porous organic crystals—have become an exciting research topic in the field of proton-conducting materials. For a better electrolyte, a high proton conductivity on the order of 10−2 S cm−1 or higher is preferred as efficient proton transport between the electrodes is ultimately necessary. With an emphasis on design principles, this Concept will focus on MOFs and other crystalline solid-based proton-conducting platforms that exhibit “ultrahigh superprotonic” conductivities with values in excess of 10−2 S cm−1. While only a handful of MOFs exhibit such an ultrahigh conductivity, this quality in other systems is even rarer. In addition to interpreting the structural–functional correlation by taking advantage of their crystalline nature, we address the challenges and promising directions for future research.  相似文献   

2.
In this work, the two example rare earth-based metal-organic frameworks (LaIII-based MOFs), Eu-ETTB and Gd-ETTB, were obtained by self-assembly. Both materials showed extremely high proton conductivity, with the proton conductivity of Eu-ETTB being 1.53×10−2 S cm−1 at 98 % relative humidity (RH) and 85 °C and that of Gd-ETTB being 2.63×10−2 S cm−1 at 98 % RH and 75 °C. This was almost the best performance observed for three-dimensional porous MOFs without post-synthetic modification and was based on milder conditions than for most materials. Furthermore, cycle test experiments and continuous work tests showed that both materials had excellent performance both in terms of stability and durability. Water vapor adsorption experiments showed that a large number of water molecules are adsorbed the hydrogen-bond network's being rebuilt by the adsorbed water molecules in the pore channel and thus optimizing the channels for proton transfer explained the MOF's high performance.  相似文献   

3.
Post‐synthesis modification of MIL‐101(Cr)‐NO2 was explored in order to decorate the organic backbone by propyl‐sulfonic groups, with the aim to incorporate mobile and acidic protons for solid‐state proton electrolyte applications. The resulting solid switched from insulating towards proton superconductive behavior under humidity, while the conductivity recorded at 363 K and 95 % relative humidity reached 4.8×10?3 S cm?1. Propitiously, the impregnation of the material by strong acidic molecules (H2SO4) further boosted the proton conductivity performances up to the remarkable σ value of 1.3×10?1 S cm?1 at 363 K/95 % RH, which reaches the performances of the best proton conductive MOF reported so far.  相似文献   

4.
Hydrogen-bonded organic frameworks (HOFs) are ordered supramolecular solid structures, however, nothing much explored as centimetre-scale self-standing films. The fabrication of such crystals comprising self-supported films is challenging due to the limited flexibility and interaction of the crystals, and therefore studies on two-dimensional macrostructures of HOFs are limited to external supports. Herein, we introduce a novel chemical gradient strategy to fabricate a crystal-deposited HOF film on an in situ-formed covalent organic polymer film (Tam-Bdca-CGHOF). The fabricated film showed versatility in chemical bonding along its thickness from covalent to hydrogen-bonded network. The kinetic-controlled Tam-Bdca-CGHOF showed enhanced proton conductivity (8.3×10−5 S cm−1) compared to its rapid kinetic analogue, Tam-Bdca-COP (2.1×10−5 S cm−1), which signifies the advantage of bonding-engineering in the same system.  相似文献   

5.
The development of solid-state proton conductors with high proton conductivity at low temperatures is crucial for the implementation of hydrogen-based technologies for portable and automotive applications. Here, we report on the discovery of a new crystalline metal acid triphosphate, ZrH5(PO4)3 (ZP3), which exhibits record-high proton conductivity of 0.5–3.1×10−2 S cm−1 in the range 25–110 °C in anhydrous conditions. This is the highest anhydrous proton conductivity ever reported in a crystalline solid proton conductor in the range 25–110 °C. Superprotonic conductivity in ZP3 is enabled by extended defective frustrated hydrogen bond chains, where the protons are dynamically disordered over two oxygen centers. The high proton conductivity and stability in anhydrous conditions make ZP3 an excellent candidate for innovative applications in fuel cells without the need for complex water management systems, and in other energy technologies requiring fast proton transfer.  相似文献   

6.
Metal‐organic frameworks (MOFs) as new classes of proton‐conducting materials have been highlighted in recent years. Nevertheless, the exploration of proton‐conducting MOFs as formic acid sensors is extremely lacking. Herein, we prepared two highly stable 3D isostructural lanthanide(III) MOFs, {(M(μ3‐HPhIDC)(μ2‐C2O4)0.5(H2O))?2 H2O}n (M=Tb ( ZZU‐1 ); Eu ( ZZU‐2 )) (H3PhIDC=2‐phenyl‐1H‐imidazole‐4,5‐dicarboxylic acid), in which the coordinated and uncoordinated water molecules and uncoordinated imidazole N atoms play decisive roles for the high‐performance proton conduction and recognition ability for formic acid. Both ZZU‐1 and ZZU‐2 show temperature‐ and humidity‐dependent proton‐conducting characteristics with high conductivities of 8.95×10?4 and 4.63×10?4 S cm‐1 at 98 % RH and 100 °C, respectively. Importantly, the impedance values of the two MOF‐based sensors decrease upon exposure to formic acid vapor generated from formic aqueous solutions at 25 °C with good reproducibility. By comparing the changes of impedance values, we can indirectly determine the concentration of HCOOH in aqueous solution. The results showed that the lowest detectable concentrations of formic acid aqueous solutions are 1.2×10?2 mol L?1 by ZZU‐1 and 2.0×10?2 mol L?1 by ZZU‐2 . Furthermore, the two sensors can distinguish formic acid vapor from interfering vapors including MeOH, N‐hexane, benzene, toluene, EtOH, acetone, acetic acid and butane. Our research provides a new platform of proton‐conductive MOFs‐based sensors for detecting formic acid.  相似文献   

7.
A novel sulfonated diamine, 4,4′‐bis(4‐amino‐3‐trifluoromethylphenoxy) biphenyl 3,3′‐disulfonic acid (F‐BAPBDS), was successfully synthesized by nucleophilic aromatic substitution of 4,4′‐dihydroxybiphenyl with 2‐chloro‐5‐nitrobenzotrifluoride, followed by reduction and sulfonation. A series of sulfonated polyimides of high molecular weight (SPI‐x, x represents the molar percentage of the sulfonated monomer) were prepared by copolymerization of 1,4,5,8‐naphathlenetetracarboxylic dianhydride (NTDA) with F‐BAPBDS and nonsulfonated diamine. Flexible and tough membranes of high mechanical strength were obtained by solution casting and the electrolyte properties of the polymers were intensively investigated. The copolymer membranes exhibited excellent oxidative stability due to the introducing of the CF3 groups. The SPI membranes displayed desirable proton conductivity (0.52×10−1–0.97×10−1 S·cm−1) and low methanol permeability (less than 2.8×10−7 cm2·s−1). The highest proton conductivity (1.89×10−1 S·cm−1) was obtained for the SPI‐90 membrane at 80°C, with an IEC of 2.12 mequiv/g. This value is higher than that of Nafion 117 (1.7×10−1 S·cm−1). Furthermore, the hydrolytic stability of the obtained SPIs is better than the BDSA and ODADS based SPIs due to the hydrophobic CF3 groups which protect the imide ring from being attacked by water molecules, in spite of its strong electron‐withdrawing behaviors.  相似文献   

8.
We demonstrate the facile microwave‐assisted synthesis of a porous organic framework 1 and the sulfonated solid ( 1S ) through postsubstitution. Remarkably, the conductivity of 1S showed an approximately 300‐fold enhancement at 30 °C as compared to that of 1 , and reached 7.72×10−2 S cm−1 at 80 °C and 90 % relative humidity. The superprotonic conductivity exceeds that observed for any conductive porous organic polymer reported to date. This material, which is cost‐effective and scalable for mass production, also revealed long‐term performance over more than 3 months without conductivity decay.  相似文献   

9.
Proton conductivities of layered solid electrolytes can be improved by minimizing strain along the conduction path. It is shown that the conductivities (σ) of multilayer graphene oxide (GO) films (assembled by the drop‐cast method) are larger than those of single‐layer GO (prepared by either the drop‐cast or the Langmuir‐Blodgett (LB) method). At 60 % relative humidity (RH), the σ value increases from 1×10−6 S cm−1 in single‐layer GO to 1×10−4 and 4×10−4 S cm−1 for 60 and 200 nm thick multilayer films, respectively. A sudden decrease in conductivity was observed for with ethylenediamine (EDA) modified GO (enGO), which is due to the blocking of epoxy groups. This experiment confirmed that the epoxide groups are the major contributor to the efficient proton transport. Because of a gradual improvement of the conduction path and an increase in the water content, σ values increase with the thickness of the multilayer films. The reported methods might be applicable to the optimization of the proton conductivity in other layered solid electrolytes.  相似文献   

10.
Materials combining proton conductivity and magnetism have attracted great attention in recent years due to their intriguing application in sensors and fuel cells. Herein a two-dimensional metal-organic framework, [Cu(atz)2(H2O)2]⋅H2O ( 1 ) (Hatz=5-aminotetrazole), has been obtained in a green synthesis method. The single-crystal structure revealed that the atz ligands as linkers coordinate with copper ions to sql networks, between which water molecules are immobilized through hydrogen bonds. The resulting complex 1 exhibits a high proton conductivity of 1.11×10−4 and 6.19×10−4 S cm−1 at room temperature and 333 K, respectively, under 98% RH with an activation energy of 0.56 eV. Upon dehydration, the proton conductivity of 1_dg drops by an order of magnitude. Furthermore, the magnetic behavior changes from long-range ferrimagnetic ordering of 1 to canted antiferromagnetic behaviour of 1_dg .  相似文献   

11.
Facile postsynthetic oxidation of the thiol‐laced UiO‐66‐type framework UiO‐66(SH)2 enabled the generation of UiO‐66(SO3H)2 with sulfonic acid groups covalently linked to the backbone of the system. The oxidized material exhibited a superprotonic conductivity of 8.4×10?2 S cm?1 at 80 °C and 90 % relative humidity, and long‐term stability of the conductivity was observed. This level of conductivity exceeds that of any proton‐conducting MOF reported to date and is equivalent to the conductivity of the most effective known electrolyte, Nafion.  相似文献   

12.
Developing new materials for anhydrous proton conduction under high-temperature conditions is significant and challenging. Herein, we create a series of highly crystalline covalent organic frameworks (COFs) via a pore engineering approach. We simultaneously engineer the pore geometry (generating concave dodecagonal nanopores) and pore surface (installing multiple functional groups such as −C=N−, −OH, −N=N− and −CF3) to improve the utilization efficiency and host–guest interaction of proton carriers, hence benefiting the enhancement of anhydrous proton conduction. Upon loading with H3PO4, COFs can realize a proton conductivity of 2.33×10−2 S cm−1 under anhydrous conditions, among the highest values of all COF materials. These materials demonstrate good stability and maintain high proton conductivity over a wide temperature range (80–160 °C). This work paves a new way for designing COFs for anhydrous proton conduction applications, which shows great potential as high-temperature proton exchange membranes.  相似文献   

13.
A novel metal–organic framework [Zn3(Ni-H2TPPP)(Ni-H4TPPP)(Ni-H5TPPP) ⋅ 7(CH3)2NH2 ⋅ DMF ⋅ 7 H2O] (where Ni-HxTPPP (x=2,4,5) are partially deprotonated [5,10,15,20-tetrakis(3-(phosphonatophenyl)-porphyrinato(2-))]nickel(II) species), IPCE-2Ni , with outstanding proton conductivity (1.0×10−2 S cm−1 at 75 °C and 95 % relative humidity) has been obtained. The high concentration of free phosphonate groups and compensating dimethylammonium cations bound by hydrogen bonds in the unique crystal structure of IPCE-2Ni is a key factor responsible for the observed high proton conductivity, which is one order of magnitude higher than for the corresponding MOF based on 5,10,15,20-tetrakis(4-(phosphonatophenyl)porphyrinato(2-))]nickel(II) IPCE-1Ni and comparable with that of leaders among MOFs.  相似文献   

14.
We proposed a new strategy to maximize the density of acidic groups by modulating the electronic effects of the substituents for high-performance proton conductors. The conductivity of the sulfonated 1-MeL40-S with methyl group corresponds to 2.29×10−1 S cm−1 at 80 °C and 90 % relative humidity, remarkably an 22100-fold enhancement over the nonsulfonated 1-MeL40 . 1-MeL40-S maintains long-term conductivity for one month. We confirm that this synthetic method is generalized to the extended version POPs, 2-MeL40-S and 3-MeL40-S . In particular, the conductivities of the POPs compete with those of top-level porous organic conductors. Moreover, the activation energy of the POPs is lower than that of the top-performing materials. This study demonstrates that systematic alteration of the electronic effects of substituents is a useful route to improve the conductivity and long-term durability of proton-conducting materials.  相似文献   

15.
Poor mechanical stability of the polymer electrolyte membranes remains one of the bottlenecks towards improving the performance of the proton exchange membrane (PEM) fuel cells. The present work proposes a unique way to utilize crystalline covalent organic frameworks (COFs) as a self‐standing, highly flexible membrane to further boost the mechanical stability of the material without compromising its innate structural characteristics. The as‐synthesized p‐toluene sulfonic acid loaded COF membranes (COFMs) show the highest proton conductivity (as high as 7.8×10−2 S cm−1) amongst all crystalline porous organic polymeric materials reported to date, and were tested under real PEM operating conditions to ascertain their practical utilization as proton exchange membranes. Attainment of 24 mW cm−2 power density, which is the highest among COFs and MOFs, highlights the possibility of using a COF membrane over the other state‐of‐the‐art crystalline porous polymeric materials reported to date.  相似文献   

16.
The limited long‐term hydrolytic stability of rapidly emerging 3D‐extended framework materials (MOFs, COFs, MOPs, etc.) is still one of major barriers for their practical applications as new solid‐state electrolytes in fuel cells. To obtain hydrolytically stable materials, two H2PO4?‐exchanged 3D inorganic cationic extended frameworks (CEFs) were successfully prepared by a facile anion‐exchange method. Both anion‐exchanged CEFs (YbO(OH)P and NDTBP) show significantly enhanced proton conductivity when compared with the original materials (YbO(OH)Cl and NDTB) with an increase of up to four orders‐of‐magnitude, reaching 2.36×10?3 and 1.96×10?2 S cm?1 at 98 % RH and 85 °C for YbO(OH)P and NDTBP, respectively. These values are comparable to the most efficient proton‐conducting MOFs. In addition, these two anion‐exchanged materials are stable in boiling water, which originates from the strong electrostatic interaction between the H2PO4? anion and the cationic host framework, showing a clear advance over all the acid‐impregnated materials (H2SO4@MIL‐101, H3PO4@MIL‐101, and H3PO4@Tp‐Azo) as practical solid‐state fuel‐cell electrolytes. This work offers a new general and efficient approach to functionalize 3D‐extended frameworks through an anion‐exchange process and achieves water‐stability with ultra‐high proton conductivity above 10?2 S cm?1.  相似文献   

17.
Metal–organic frameworks (MOFs) have been extensively explored as advanced chemical sensors in recent years. However, there are few studies on MOFs as acidic gas sensors, especially proton conductive MOFs. In this work, two new proton-conducting 3D MOFs, {[Co3(p-CPhHIDC)2(4,4′-bipy)(H2O)] ⋅ 2 H2O}n ( 1 ) (p-CPhH4IDC=2-(4-carboxylphenyl)-1 H-imidazole-4,5-dicarboxylic acid; 4,4′-bipy=4,4′-bipyridine) and {[Co3(p-CPhHIDC)2(bpe)(H2O)] ⋅ 3 H2O}n ( 2 ) (bpe=trans-1,2-bis(4-pyridyl)ethylene) have been solvothermally prepared and investigated their formic acid sensing properties. Both MOFs 1 and 2 show temperature- and humidity-dependent proton conductive properties and exhibit optimized proton conductivities of 1.04×10−3 and 7.02×10−4 S cm at 98 % relative humidity (RH) and 100 °C, respectively. The large number of uncoordinated carboxylic acid sites, free and coordination water molecules, and hydrogen-bonding networks inside the frameworks are favorable to the proton transfer. By measuring the impedance values after exposure to formic acid vapor at 98 % or 68 % RH and 25 °C, both MOFs indicate reproducibly high sensitivity to the analyte. The detection limit of formic acid vapor is as low as 35 ppm for 1 and 70 ppm for 2 . Meanwhile, both MOFs also show commendable selectivity towards formic acid among interfering solutions. The proton conducting and formic acid sensing mechanisms have been suggested according to the structural analysis, Ea calculations, N2 and water vapor absorptions, PXRD and SEM measurements. This work will open a new avenue for proton-conductive MOF-based impedance sensors and promote the potential application of these MOFs for indirectly monitoring the concentrations of formic acid vapors.  相似文献   

18.
Single-ligand-based electronically conductive porous coordination polymers/metal–organic frameworks (EC-PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π-conjugated EC-MOF containing copper units with mixed trigonal ligands was developed: Cu3(HHTP)(THQ) (HHTP=2,3,6,7,10,11-hexahydrotriphenylene, THQ=tetrahydroxy-1,4-quinone). The modulated conductivity (σ≈2.53×10−5 S cm−1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2 g−1) of the Cu3(HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor.  相似文献   

19.
A new phosphonate-based anionic bimetallic organic framework, with the general formula of A4−Zn−DOBDP (wherein A is Li+ or Na+, and DOBDP6− is the 2,5-dioxido-1,4-benzenediphosphate ligand) is prepared and characterized for energy storage applications. With four alkali cations per formula unit, the A4−Zn−DOBDP MOF is found to be the first example of non-solvated cation conducting MOF with measured conductivities of 5.4×10−8 S cm−1 and 3.4×10−8 S cm−1 for Li4- and Na4- phases, indicating phase and composition effects of Li+ and Na+ shuttling through the channels. Three orders of magnitude increase in ionic conductivity is further attained upon solvation with propylene carbonate, placing this system among the best MOF ionic conductors at room temperature. As positive electrode material, Li4−Zn−DOBDP delivers a specific capacity of 140 mAh g−1 at a high average discharge potential of 3.2 V (vs. Li+/Li) with 90 % of capacity retention over 100 cycles. The significance of this research extends from the development of a new family of electroactive phosphonate-based MOFs with inherent ionic conductivity and reversible cation storage, to providing elementary insights into the development of highly sought yet still evasive MOFs with mixed-ion and electron conduction for energy storage applications.  相似文献   

20.
The water stable UiO‐66(Zr)‐(CO2H)2 MOF exhibits a superprotonic conductivity of 2.3×10?3 S cm?1 at 90 °C and 95 % relative humidity. Quasi‐elastic neutron scattering measurements combined with aMS‐EVB3 molecular dynamics simulations were able to probe individually the dynamics of both confined protons and water molecules and to further reveal that the proton transport is assisted by the formation of a hydrogen‐bonded water network that spans from the tetrahedral to the octahedral cages of this MOF. This is the first joint experimental/modeling study that unambiguously elucidates the proton‐conduction mechanism at the molecular level in a highly conductive MOF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号