首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
In recent years interest in the development of protocols that facilitate the oxidative addition of gold to access mild cross-coupling processes mediated by this metal has increased. In this context, we report herein that ascorbic acid, a natural and readily accessible antioxidant, can be used to accelerate the oxidative addition of aryldiazonium chlorides onto AuI. The aryl–AuIII species generated in this way, has been used to prepare 3-arylindoles in a one-pot protocol starting from anilines and para-, meta-, and ortho- substituted aryldiazonium chlorides. The mechanism underlying the oxidative addition has been examined in detail based on EPR analyses, cyclic voltammetry, and DFT calculations. Interestingly, we have found that in this protocol, the chloride atom induces the AuII/AuIII oxidation step.  相似文献   

2.
The first isolated examples of intermolecular oxidative addition of alkenyl and alkynyl iodides to AuI are reported. Using a 5,5′‐difluoro‐2,2′‐bipyridyl ligated complex, oxidative addition of geometrically defined alkenyl iodides occurs readily, reversibly and stereospecifically to give alkenyl‐AuIII complexes. Conversely, reversible alkynyl iodide oxidative addition generates bimetallic complexes containing both AuIII and AuI centers. Stoichiometric studies show that both new initiation modes can form the basis for the development of C?C bond forming cross‐couplings.  相似文献   

3.
Heteroarylation of alkenes with aryl iodides was efficiently achieved with a (MeDalphos)AuCl complex through AuI/AuIII catalysis. The possibility to combine oxidative addition of aryl iodides and π-activation of alkenes at gold is demonstrated for the first time. The reaction is robust and general (>30 examples including internal alkenes, 5-, 6-, and 7-membered rings). It is regioselective and leads exclusively to trans addition products. The (P,N) gold complex is most efficient with electron-rich aryl substrates, which are troublesome with alternative photoredox/oxidative approaches. In addition, it provides a very unusual switch in regioselectivity from 5-exo to 6-endo cyclization between the Z and E isomers of internal alkenols.  相似文献   

4.
Heteroarylation of alkenes with aryl iodides was efficiently achieved with a (MeDalphos)AuCl complex through AuI/AuIII catalysis. The possibility to combine oxidative addition of aryl iodides and π‐activation of alkenes at gold is demonstrated for the first time. The reaction is robust and general (>30 examples including internal alkenes, 5‐, 6‐, and 7‐membered rings). It is regioselective and leads exclusively to trans addition products. The (P,N) gold complex is most efficient with electron‐rich aryl substrates, which are troublesome with alternative photoredox/oxidative approaches. In addition, it provides a very unusual switch in regioselectivity from 5‐exo to 6‐endo cyclization between the Z and E isomers of internal alkenols.  相似文献   

5.
In the last decade, major advances have been made in homogeneous gold catalysis. However, AuI/AuIII catalytic cycle remains much less explored due to the reluctance of AuI to undergo oxidative addition and the stability of the AuIII intermediate. Herein, we report activation of aryl halides at gold(I) enabled by NHC (NHC=N-heterocyclic carbene) ligands through the development of a new class of L-shaped heterobidentate ImPy (ImPy=imidazo[1,5-a]pyridin-3-ylidene) N,C ligands that feature hemilabile character of the amino group in combination with strong σ-donation of the carbene center in a rigid conformation, imposed by the ligand architecture. Detailed characterization and control studies reveal key ligand features for AuI/AuIII redox cycle, wherein the hemilabile nitrogen is placed at the coordinating position of a rigid framework. Given the tremendous significance of homogeneous gold catalysis, we anticipate that this ligand platform will find widespread application.  相似文献   

6.
Crystal structures of a series of organic–inorganic hybrid gold iodide perovskites, formulated as A2[AuII2][AuIIII4] [A=methylammonium (MA) ( 1 ) and formamidinium (FA) ( 2 )], A′2[I3]1−x[AuII2]x[AuIIII4] [A′=imidazolium (IMD) ( 3 ), guanidinium (GUA) ( 4 ), dimethylammonium (DMA) ( 5 ), pyridinium (PY) ( 6 ), and piperizinium (PIP) ( 7 )], systematically changed depending on the cation size. In addition, triiodide (I3) ions were partly incorporated into the AuI2 sites of 3 – 7 , whereas they were not incorporated into those of 1 and 2 . Such a difference comes from the size of the organic cation. Optical absorption spectra showed characteristic intervalence charge-transfer bands from AuI to AuIII species, and the optical band gap increased as the size of the cation became larger.  相似文献   

7.
Herein, we disclose the gold-catalyzed 1,2-diarylation of alkenes through the interplay of ligand-enabled AuI/AuIII catalysis with the idiosyncratic π-activation mode of gold complexes. Unlike the classical migratory-insertion-based approach to 1,2-diarylation, the present approach not only circumvents the formation of direct Ar−Ar′ coupling and Heck-type side products but more intriguingly demonstrates reactivity and selectivity complementary to those of previously known metal catalysis (Pd, Ni, or Cu). Detailed investigations to underpin the mechanistic scenario revealed oxidative addition of aryl iodides to an AuI complex to be the rate-limiting step owing to the non-innocent nature of the aryl alkene.  相似文献   

8.
Due to the high oxidation potential between AuI and AuIII, gold redox catalysis requires at least stoichiometric amounts of a strong oxidant. We herein report the first example of an electrochemical approach in promoting gold‐catalyzed oxidative coupling of terminal alkynes. Oxidation of AuI to AuIII was successfully achieved through anode oxidation, which enabled facile access to either symmetrical or unsymmetrical conjugated diynes through homo‐coupling or cross‐coupling. This report extends the reaction scope of this transformation to substrates that are not compatible with strong chemical oxidants and potentiates the versatility of gold redox chemistry through the utilization of electrochemical oxidative conditions.  相似文献   

9.
Exploration of elementary reactions in organometallic catalysis is an important method with which to discover new reactions. In this article, we report a gold(I)-catalyzed iodo-alkynylation of benzyne involving the merging of challenging migratory insertion and an oxidative addition process in gold catalytic cycle. A wide range of structurally diverse alkynyl iodides are good coupling partners in this iodo-alkynylation transformation. Both aliphatic and aromatic alkynyl iodides can react with benzynes smoothly to afford highly functionalized 1,2-disubstituted aromatics in moderate to good yields. Its good functional group compatibility and late-stage application of complex molecules demonstrate its synthetic robustness. Studies of the mechanism reveals the feasibility of oxidative addition and the DFT calculations demonstrate the possible migratory insertion of benzyne into AuIII-carbon bonds in the AuI/AuIII redox catalytic cycle, representing an important step towards an elementary reaction in gold chemistry research.  相似文献   

10.
Herein, we disclose the gold‐catalyzed 1,2‐diarylation of alkenes through the interplay of ligand‐enabled AuI/AuIII catalysis with the idiosyncratic π‐activation mode of gold complexes. Unlike the classical migratory‐insertion‐based approach to 1,2‐diarylation, the present approach not only circumvents the formation of direct Ar?Ar′ coupling and Heck‐type side products but more intriguingly demonstrates reactivity and selectivity complementary to those of previously known metal catalysis (Pd, Ni, or Cu). Detailed investigations to underpin the mechanistic scenario revealed oxidative addition of aryl iodides to an AuI complex to be the rate‐limiting step owing to the non‐innocent nature of the aryl alkene.  相似文献   

11.
The photophysical properties of a series of T-shaped coinage d10 metal complexes, supported by a bis(mesoionic carbene)carbazolide (CNC) pincer ligand, are explored. The series includes a rare new example of a tridentate T-shaped AgI complex. Post-complexation modification of the AuI complex provides access to a linear cationic AuI complex following ligand alkylation, or the first example of a cationic square planar AuIII−F complex from electrophilic attack on the metal centre. Emissions ranging from blue (CuI) to orange (AgI) are obtained, with variable contributions of thermally-dependent fluorescence and phosphorescence to the observed photoluminescence. Green emissions are observed for all three gold complexes (neutral T-shaped AuI, cationic linear AuI and square planar cationic AuIII). The higher quantum yield and longer decay lifetime of the linear gold(I) complex are indicative of increased phosphorescence contribution.  相似文献   

12.
Chiral binuclear gold(I) phosphine complexes catalyze enantioselective intermolecular hydroarylation of allenes with indoles in high product yields (up to 90 %) and with moderate enantioselectivities (up to 63 % ee). Among the gold(I) complexes examined, better ee values were obtained with binuclear gold(I) complexes, which displayed intramolecular AuI AuI interactions. The binuclear gold(I) complex 4c [(AuCl)2( L3 )] with chiral biaryl phosphine ligand (S)‐(−)‐MeO‐biphep ( L3 ) is the most efficient catalyst and gives the best ee value of up to 63 %. Substituents on the allene reactants have a slight effect on the enantioselectivity of the reaction. Electron‐withdrawing groups on the indole substrates decrease the enantioselectivity of the reaction. The relative reaction rates of the hydroarylation of 4‐X‐substituted 1,3‐diarylallenes with N‐methylindole in the presence of catalyst 4c [(AuCl)2( L3 )] / AgOTf [ L3 =(S)‐(−)‐MeO‐biphep], determined through competition experiments, correlate (r2=0.996) with the substituent constants σ. The slope value is −2.30, revealing both the build‐up of positive charge at the allene and electrophilic nature of the reactive AuI species. Two plausible reaction pathways were investigated by density functional theory calculations, one pathway involving intermolecular nucleophilic addition of free indole to aurated allene intermediate and another pathway involving intramolecular nucleophilic addition of aurated indole to allene via diaurated intermediate E2 . Calculated results revealed that the reaction likely proceeds via the first pathway with a lower activation energy. The role of AuI AuI interactions in affecting the enantioselectivity is discussed.  相似文献   

13.
The compound [(μ‐dppp)(AuCl)2], previously reported to associate intermolecularly in a chain (catena) structure through AuI–AuI interactions (3.316Å), was obtained from gold(III) precursors in a cyclo form with shortened intramolecular AuI—AuI contacts at 3.237Å and a puckered AuPCCCPAu seven‐membered ring. DFT calculations using a large relativistic basis to account for the d10–d10 interaction reproduce the observed molecular structure in the crystal of this “linkage isomer”, including the conspicuous distortion at one of the gold atoms. The chelate complex [(dppp)PtCl2] was crystallized and structurally characterized as the dichloromethane solvate.  相似文献   

14.
The synthesis of tetranuclear gold complexes, a structurally unprecedented octanuclear complex with a planar [AuI8] core, and pentanuclear [AuI4MI] (M=Cu, Ag) complexes is presented. The linear [AuI4] complex undergoes C?H functionalization of carbonyl compounds under mild reaction conditions. In addition, [AuI4AgI] catalyzes the carbonylation of primary amines to form ureas under homogeneous conditions with efficiencies higher than those achieved by gold nanoparticles.  相似文献   

15.
16.
An NHC‐coordinated diphosphene is employed as ligand for the synthesis of a hydrocarbon‐soluble monomeric AuI hydride, which readily adds CO2 at room temperature yielding the corresponding AuI formate. The reversible reaction can be expedited by the addition of NHC, which induces β‐hydride shift and the removal of CO2 from equilibrium through the formation of an NHC‐CO2 adduct. The AuI formate is alternatively formed by dehydrogenative coupling of the AuI hydride with formic acid (HCO2H), thus in total establishing a reaction sequence for the AuI hydride mediated dehydrogenation of HCO2H as chemical hydrogen storage material.  相似文献   

17.
A tray‐shaped PdII3AuI3 complex ( 1 ) is prepared from 3,5‐bis(3‐pyridyl)pyrazole by means of tricyclization with AuI followed by PdII clipping. Tray 1 is an efficient scaffold for the modular assembly of [3×n] AuI clusters. Treatment of 1 with the AuI3 tricyclic guest 2 in H2O/CH3CN (7:3) or H2O results in the selective formation of a [3×2] cluster ( 1 ? 2 ) or a [3×3] cluster ( 1 ? 2 ? 1 ), respectively. Upon subsequent addition of AgI ions, these complexes are converted to an unprecedented Au3–Au3–Ag–Au3–Au3 metal ion cluster.  相似文献   

18.
Aurophilic interactions (AuI???AuI) are crucial in directing the supramolecular self‐assembly of many gold(I) compounds; however, this intriguing chemistry has been rarely explored for the self‐assembly of nanoscale building blocks. Herein, we report on studies on aurophilic interactions in the structure‐directed self‐assembly of ultrasmall gold nanoparticles or nanoclusters (NCs, <2 nm) using [Au25(SR)18]? (SR=thiolate ligand) as a model cluster. The self‐assembly of NCs is initiated by surface‐motif reconstruction of [Au25(SR)18]? from short SR‐[AuI‐SR]2 units to long SR‐[AuI‐SR]x (x>2) staples accompanied by structure modification of the intrinsic Au13 kernel. Such motif reconstruction increases the content of AuI species in the protecting shell of Au NCs, providing the structural basis for directed aurophilic interactions, which promote the self‐assembly of Au NCs into well‐defined nanoribbons in solution. More interestingly, the compact structure and effective aurophilic interactions in the nanoribbons significantly enhance the luminescence intensity of Au NCs with an absolute quantum yield of 6.2 % at room temperature.  相似文献   

19.
A tray‐shaped PdII3AuI3 complex ( 1 ) is prepared from 3,5‐bis(3‐pyridyl)pyrazole by means of tricyclization with AuI followed by PdII clipping. Tray 1 is an efficient scaffold for the modular assembly of [3×n] AuI clusters. Treatment of 1 with the AuI3 tricyclic guest 2 in H2O/CH3CN (7:3) or H2O results in the selective formation of a [3×2] cluster ( 1 ⋅ 2 ) or a [3×3] cluster ( 1 ⋅ 2 ⋅ 1 ), respectively. Upon subsequent addition of AgI ions, these complexes are converted to an unprecedented Au3–Au3–Ag–Au3–Au3 metal ion cluster.  相似文献   

20.
Enantiomerically pure thiahelicenes displaying a terminal phosphole unit and a stereogenic phosphorus center have been prepared by oxidative photocyclization of a diaryl‐olefin precursor. Starting from one of these phosphathiahelicene oxides, the corresponding trivalent phosphine–AuI complex is obtained with complete diastereoselectivity. It affords a new, excellent precatalyst for the enantioselective cycloisomerization of N‐tethered enynes (up to 96 % ee).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号