首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Direct methane conversion (DMC) to oxygenates at low temperature is of great value but remains challenging due to the high energy barrier for C−H bond activation. Here, we report that in situ decoration of Pd1-ZSM-5 single atom catalyst (SAC) by CO molecules significantly promoted the DMC reaction, giving the highest turnover frequency of 207 h−1 ever reported at room temperature and ~100 % oxygenates selectivity with H2O2 as oxidant. Combined characterizations and DFT calculations illustrate that the C-atom of CO prefers to coordinate with Pd1, which donates electrons to the Pd1−O active center (L−Pd1−O, L=CO) generated by H2O2 oxidation. The correspondingly improved electron density over Pd−O pair renders a favorable heterolytic dissociation of C−H bond with low energy barrier of 0.48 eV. Applying CO decoration strategy to M1-ZSM-5 (M=Pd, Rh, Ru, Fe) enables improvement of oxygenates productivity by 3.2–11.3 times, highlighting the generalizability of this method in tuning metal-oxo electronic structure of SACs for efficient DMC process.  相似文献   

2.
Catalytic methane decomposition into hydrogen and carbon nanofibers and the oxidations of carbon nanofibers with CO2, H2O and O2 were overviewed. Supported Ni catalysts (Ni/SiO2, Ni/TiO2 and Ni/carbon nanofiber) were effective for the methane decomposition. The activity and life of the supported Ni catalysts for methane decomposition strongly depended on the particle size of Ni metal on the catalysts. The modification of the catalysts with Pd enhanced the catalytic activity and life for methane decomposition. In particular, the supported Ni catalysts modified with Pd showed high turnover number of hydrogen formation at temperatures higher than 973 K with a high one-pass methane conversion (>70%). However, sooner or later, every catalyst completely lost their catalytic activities due to the carbon layer formation on active metal surfaces. In order to utilize a large quantity of the carbon nanofibers formed during methane decomposition as a chemical feedstock or a powdered fuel for heat generation, they were oxidized with CO2, H2O and O2 into CO, synthesis gas and CO2, respectively. In every case, the conversion of carbon was greater than 95%. These oxidations of carbon nanofibers recovered or enhanced the initial activities of the supported Ni catalysts for methane decomposition.  相似文献   

3.
Summary The effect of La2O3 and TiO2 on product selectivity, methane conversion and coke formation over NiO/MgO/ α -Al2O3 catalyst were studied in a simultaneous steam and CO2 reforming of methane to syngas. La2O3 and TiO2 were added to the catalyst via incipient wetness impregnation and bulk precipitation techniques and catalyst activity was tested in a fixed bed quartz reactor. Results reveal that although the addition of these oxides has no effect on the product selectivity and methane conversion, but can reduce coke formation on the surface of the catalysts as it can enhance the mobility of lattice oxygen anions. The results further show that the catalysts prepared by bulk precipitation technique decrease the coke formation more effectively.  相似文献   

4.
C−N coupling is significant for the synthesis of fine chemicals toward various applications. Hydroaminoalkylation of olefins is a tandem reaction of C−N coupling involving first the formation of an aldehyde through hydroformylation of an olefin and then the production of amine through reductive amination of the aldehyde. Here we report a stable, supported catalyst of singly dispersed Rh1 atoms anchored on TiO2 (P25) nanoparticles designated as Rh1/P25. Its high activity for C−N coupling was demonstrated by six hydroaminoalkylations of olefins and amines with selectivity of higher than 90% for producing tertiary amines. The singly dispersed Rh1O4 on P25 exhibit activity and selectivity for hydroaminoalkylation comparable or even higher than some reported molecular catalysts. In contrast to molecular catalysts, the Rh-based single-atom Rh heterogeneous catalysis (Rh1/P25) can be readily separated from reactants and products, reused for multiple runs of hydroaminoalkylation, and recycled with a low cost.  相似文献   

5.
Novel γ-Al2O3 supported nickel (Ni/Al2O3) catalyst was developed as a functional layer for Ni–ScSZ cermet anode operating on methane fuel. Catalytic tests demonstrated Ni/Al2O3 had high and comparable activity to Ru–CeO2 and much higher activity than the Ni–ScSZ cermet anode for partial oxidation, steam and CO2 reforming of methane to syngas between 750 and 850 °C. By adopting Ni/Al2O3 as a catalyst layer, the fuel cell demonstrated a peak power density of 382 mW cm?2 at 850 °C, more than two times that without the catalyst layer. The Ni/Al2O3 also functioned as a diffusion barrier layer to reduce the methane concentration within the anode; consequently, the operation stability was also greatly improved without coke deposition.  相似文献   

6.
CO methanation on Ni/CeO2 has recently received increasing attention. However, the low-temperature activity and carbon resistance of Ni/CeO2 still need to be improved. In this study, plasma decomposition of nickel nitrate was performed at ca. 150°C and atmospheric pressure. This was followed by hydrogen reduction at 500 °C in the absence of plasma, and a highly dispersed Ni/CeO2 catalyst was obtained with improved CO adsorption and enhanced metal-support interaction. The plasma-decomposed catalyst showed significantly improved low-temperature activity with high methane selectivity (up to 100%) and enhanced carbon resistance for CO methanation. For example, at 250°C, the plasma-decomposed catalyst showed a CO conversion of 96.8% with high methane selectivity (almost 100%), whereas the CO conversion was only 14.7% for a thermally decomposed catalyst.  相似文献   

7.
Hydrogenation of furfurylidene acetone has been carried out using Ni/γ−Al2O3 and Cu/γ−Al2O3 catalyst in the presence of isopropanol in autoclave batch reactor. The hydrogenation using Cu/γ−Al2O3 at 120oC for 6 h gives main formation of 1,5-bis-(furan-2-yl)-pentan-3-one. Reaction at higher temperature at 140oC for 8 h using Ni/γ−Al2O3 leads to 1,5-bis-(furan-2-yl)-penta-1-en-3-one. The different selectivity of both catalysts is explained by physical properties including the surface area and distribution of metal loading.  相似文献   

8.
The hydrogenolysis of dimethyl disulfide in the presence of Ni,Mo and Co,Mo bimetallic sulfide catalysts was studied at atmospheric pressure and T = 160–400°C. At T ≤ 200°C, dimethyl disulfide undergoes hydrogenolysis at the S-S bond, yielding methanethiol in 95–100% yield. The selectivity of the reaction decreases with increasing residence time and temperature due to methanethiol undergoing condensation to dimethyl disulfide and hydrogenolysis at the C-S bond to yield methane and hydrogen sulfide. The specific activity of the Co,Mo/Al2O3 catalyst in hydrogenolysis at the S-S and C-S bonds is equal to or lower than the total activity of the monometallic catalysts. The Ni,Mo/Al2O3 catalyst is twice as active as the Ni/Al2O3 + Mo/Al2O3 or the cobalt-molybdenum bimetallic catalyst.  相似文献   

9.
A novel carbon‐titania composite material, C/TiO2, has been prepared by growing carbon nanofibers (CNFs) on TiO2 surface via methane decomposition using Ni‐Cu as a catalyst. The C/TiO2 was used for preparing supported palladium catalyst, Pd/C/TiO2. The support and Pd/C/TiO2 catalyst were characterized by BET, SEM, XRD and TG‐DTG. Its catalytic performance was evaluated in selective hydrogenation of citral to citronellal, and compared with that of activated carbon supported Pd catalyst. It was found that the Pd/C/TiO2 catalyst contains 97% of mesopores. And it exhibited 88% of selectivity to citronellal at citral conversion of 90% in citral hydrogenation, which was much higher than that of activated carbon supported Pd catalyst. This result may be attributed to elimination of internal diffusion limitations, which were significant in activated carbon supported Pd catalyst, due to its microporous structure.  相似文献   

10.
X-ray absorption spectroscopy is used to study 1% Ni/Al2O3, 5% Ni/Al2O3, and 5% Ni/TiO2 catalysts for glycerol and methane conversion. The effect of treatment in H2 under microwave irradiation on the reduction of part of the nickel to the metallic state in the titanium oxide-supported catalyst is demonstrated.  相似文献   

11.
A mixed-conducting perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) ceramic membrane reactor with high oxygen permeability was applied for the activation of methane. The membrane reactor has intrinsic catalytic activities for methane conversion to ethane and ethylene. C2 selectivity up to 40–70% was achieved, albeit that conversion rate were low, typically 0.5–3.5% at 800–900°C with a 50% helium diluted methane inlet stream at a flow rate of 34 ml/min. Large amount of unreacted molecular oxygen was detected in the eluted gas and the oxygen permeation flux improved only slightly compared with that under non-reactive air/He experiments. The partial oxidation of methane to syngas in a BSCFO membrane reactor was also performed by packing LiLaNiO/γ-Al2O3 with 10% Ni loading as the catalyst. At the initial stage, oxygen permeation flux, methane conversion and CO selectivity were closely related with the state of the catalyst. Less than 21 h was needed for the oxygen permeation flux to reach its steady state. 98.5% CH4 conversion, 93.0% CO selectivity and 10.45 ml/cm2 min oxygen permeation flux were achieved under steady state at 850°C. Methane conversion and oxygen permeation flux increased with increasing temperature. No fracture of the membrane reactor was observed during syngas production. However, H2-TPR investigation demonstrated that the BSCFO was unstable under reducing atmosphere, yet the material was found to have excellent phase reversibility. A membrane reactor made from BSCFO was successfully operated for the POM reaction at 875°C for more than 500 h without failure, with a stable oxygen permeation flux of about 11.5 ml/cm2 min.  相似文献   

12.
The development of methods for selective cleavage reactions of thermodynamically stable C−C/C=C bonds in a green manner is a challenging research field which is largely unexplored. Herein, we present a heterogeneous Fe−N−C catalyst with highly dispersed iron centers that allows for the oxidative C−C/C=C bond cleavage of amines, secondary alcohols, ketones, and olefins in the presence of air (O2) and water (H2O). Mechanistic studies reveal the presence of water to be essential for the performance of the Fe−N−C system, boosting the product yield from <1 % to >90 %. Combined spectroscopic characterizations and control experiments suggest the singlet 1O2 and hydroxide species generated from O2 and H2O, respectively, take selectively part in the C−C bond cleavage. The broad applicability (>40 examples) even for complex drugs as well as high activity, selectivity, and durability under comparably mild conditions highlight this unique catalytic system.  相似文献   

13.
CO2 在高分散 Ni/La2O3 催化剂上的甲烷化   总被引:1,自引:0,他引:1  
 以 La2O3 为载体, 采用浸渍法制备了 10%Ni/La2O3 催化剂, 考察了该催化剂的 CO2 甲烷化反应性能. 结果表明, 在较低的温度 (350 oC) 和高空速 (约 30000 h–1) 下, 甲烷时空收率可大于 3000 g/(kg•h), 无论转化率高低, 甲烷选择性始终保持在 100%. X 射线衍射和 H2-程序升温还原等表征结果表明, CO2 在 Ni/La2O3 催化剂上的加氢机理可能与 Ni/γ-Al2O3 上不同, 并且 La2O2CO3 的形成有利于提高催化剂活性.  相似文献   

14.
In recent years, the high availability of methane in the shale gas reserves has raised significant interest in its conversion to high-value chemicals but this process is still not commercially viable. Metal oxides, due to their surface heterogeneity and the presence of Lewis acidic and basic site pairs are known to facilitate the activation of C−H bonds of methane. In this work, we investigate the C−H bond activation of methane on pristine and doped γ-Al2O3 clusters using density functional theory (DFT) calculations. Our results demonstrate that the polar pathway is energetically preferred over the radical pathway on these systems. We found that the metal dopants (boron and gallium) not only alter the catalytic activity of dopant sites but this effect is more pronounced on some of the adjacent sites (non-local). Among the selected dopants, gallium greatly improves the catalytic activity on most of the site pairs (including most active and least active) of pristine γ-Al2O3. Additionally, we identified a correlation between H2 binding energies and the C−H activation free energies on Ga-doped γ-Al2O3.  相似文献   

15.
The effects of the Pd content (0–1 wt %) and the synthesis method (joint impregnation with Ni + Pd and Pd/Ni or Ni/Pd sequential impregnation) on the physicochemical and catalytic properties of Ni–Pd/CeZrO2/Al2O3 were studied in order to develop an efficient catalyst for the conversion of methane into hydrogen-containing gas. It was shown that variation in the palladium content and a change in the method used for the introduction of an active constituent into the support matrix make it possible to regulate the redox properties of nickel cations but do not affect the size of NiO particles (14.0 ± 0.5 nm) and the phase composition of the catalyst ((γ + δ)-Al2O3, CeZrO2 solid solution, and NiO). It was established that the activity of Ni–Pd catalysts in the reaction of autothermal methane reforming depends on the method of synthesis and increases in the following order: Ni + Pd < Ni/Pd < Pd/Ni. It was found that, as the Pd content of the Ni–Pd/CeZrO2/Al2O3 catalyst was decreased from 1 to 0.05 wt %, the ability for self-activation, high activity, and operational stability of the catalyst under the conditions of autothermal methane reforming remained unaffected: at 850°C, the yield of hydrogen was ~70% at a methane conversion of ~100% during a 24-h reaction.  相似文献   

16.
The performance of heteronuclear clusters [AlXO3]+ (X=Al, AlO4, AlMg2O2, AlZnO, AlAu2, Mg, Y, VO, NbO, TaO) in activating methane has been explored by a combination of high–level quantum calculations with reported and supplementary gas-phase experiments. With different dopants in [AlXO3]+, the mechanism, reactivity and selectivity towards methane activation varies accordingly. The classic HAT competes with PCET, depending on the composition of intramolecular interactions. Although the existence of terminal oxygen radical is beneficial for classic HAT, the Alt−C interaction in the [AlXO3]+ clusters as enhanced by the strongly electronegative doping groups (X=Al, AlZnO, Mg, Zn, VO, NbO, TaO) favors the PCET process, facilitating C−H bond breaking. In addition, with different dopants, the destiny of the split methyl group varies accordingly. While strong interaction between Alt and CH3 results in the formation of the Alt−C bond, dopants with variable valance may promote the formation of deep-oxidation products like formaldehyde. It has been discussed in detail how to regulate the activity and selectivity of the active center of the catalyst via rational doping.  相似文献   

17.
Pd supported on TiO2-Al2O3 binary oxides prepared by coprecipitation method has been investigated for the total oxidation of methane. All Pd/TiO2-Al2O3 catalysts show higher activity than Pd/Al2O3 and Pd/TiO2. Among them, Pd/2Ti-3Al with a Ti/Al ratio of 2 to 3 has a T90% of 395 ℃ at a gas hourly mass velocity of 33000 mL/(h*g), which is at least 50 ℃ lower than that of Pd supported on single metal oxide Al2O3 or TiO2. The results of TPR and ^180-isotope exchange experiments demonstrated that the excellent activity of Pd/2Ti-3Al was due to its high oxygen mobility and moderate reducibility, which is in accordance with our previous work, XPS results indicated that the dispersion of Pd was not the key factor to influence the catalytic activity.  相似文献   

18.
A series of M-substituted hexaaluminates LaMAl11O19-δ (M=Fe, Co, Ni, Mn, and Cu) were prepared and characterized by XRD, XPS, TPR and TGA techniques, respectively. They exhibited different reducibility and catalytic activity for partial oxidation of methane (POM) to synthesis gas. Among the LaMAl11019-δ samples, LaNiAl11O19-δ showed the best catalytic activity for the topic reaction and selectivity for synthesis gas at 780 ℃ for 2 h. The conversion of CH4 was over 99.2%, and the product selectivity for both CO and H2 was above 90.3%.  相似文献   

19.
Thin TiO2 layers were deposited onto a carbon-supported Ni catalyst (Ni/C) through atomic layer deposition (ALD) and the resulting TiO2-coated Ni/C (ALD(TiO2)-Ni/C) was utilized for electrochemical glycerol oxidation in alkaline media. X-ray photoelectron spectroscopy analysis demonstrated that the Ni surface phase of ALD(TiO2)-Ni/C mainly consisted of Ni(OH)2 while that of uncoated Ni/C was a mixed phase of NiO and Ni(OH)2. The ALD(TiO2)-Ni/C exhibited electrocatalytic activity at least 2.4 times higher than that of Ni/C. Density functional theory calculations were used to investigate how the modified Ni surface with the TiO2 coating affects the adsorption/desorption of glycerol.  相似文献   

20.
The electrochemical properties of 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3 have been investigated as part of a study of xLiMO2·(1−x)Li2MO3 electrode systems for lithium batteries in which M=Co, Ni, Mn and M=Ti, Zr, Mn. The data indicate that the electrochemically inactive Li2TiO3 component contributes to the stabilization of LiMn0.5Ni0.5O2 electrodes, which improves the coulombic efficiency of Li/xLiMn0.5Ni0.5O2·(1−x)Li2TiO3 cells for x<1. The 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3 electrodes provide a rechargeable capacity of approximately 175 mAh/g at 50 °C when cycled between 4.6 and 2.5 V; there is no indication of spinel formation during electrochemical cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号