首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 327 毫秒
1.
Polymer surface properties are controlled by the molecular surface structures. Sum frequency generation (SFG) vibrational spectroscopy has been demonstrated to be a powerful technique to study polymer surface structures at the molecular level in different chemical environments. In this research, SFG has been used to study the surface segregation of biocide moieties derived from triclosan (TCS) and tetradecyldimethyl (3-trimethoxysilylpropyl) ammonium chloride (C-14 QAS) that have been covalently bound to a poly(dimethylsiloxane) (PDMS) matrix. PDMS materials are being developed as coatings to control biofouling. This SFG study indicated that TCS-moieties segregate to the surface when the bulk concentration of TCS-moieties exceeds 8.75% by weight. Surface segregation of C-14 QAS moieties was detected after 5% by weight incorporation into a PDMS matrix. SFG results were found to correlate well with antifouling activity, providing a molecular interpretation of such results. This research showed that SFG can aid in the development of coatings for controlling biofouling by elucidating the chemical structure of the coating surface.  相似文献   

2.
The structure of thin films of 1- and 2-butylimidazoles adsorbed on copper and steel surfaces under air was examined using sum frequency generation (SFG) vibrational spectroscopy in the ppp and ssp polarizations. Additionally, the SFG spectra of both isomers were recorded at 55 °C at the liquid imidazole/air interface for reference. Complementary bulk infrared, reflection-absorption infrared spectroscopy (RAIRS), and Raman spectra of both imidazoles were recorded for assignment purposes. The SFG spectra in the C-H stretching region at the liquid/air interface are dominated by resonances from the methyl end group of the butyl side chain of the imidazoles, indicating that they are aligned parallel or closely parallel to the surface normal. These are also the most prominent features in the SFG spectra on copper and steel. In addition, both the ppp and ssp spectra on copper show resonances from the C-H stretching modes of the imidazole ring for both isomers. The ring C-H resonances are completely absent from the spectra on steel and at the liquid/air interface. The relative intensities of the SFG spectra can be interpreted as showing that, on copper, under air, both butylimidazoles are adsorbed with their butyl side chains perpendicular to the interface and with the ring significantly inclined away from the surface plane and toward the surface normal. The SFG spectra of both imidazoles on steel indicate an orientation where the imidazole rings are parallel or nearly parallel to the surface. The weak C-H resonances from the ring at the liquid/air interface suggest that the tilt angle of the ring from the surface normal at this interface is significantly greater than it is on copper.  相似文献   

3.
Surface structure of aqueous sulfuric acid solution at a typical atmospheric concentration (0.2x, x: mole fraction) is investigated by close collaboration of molecular dynamics (MD) simulation and sum frequency generation (SFG) measurement. The SFG spectra of both O-H and S-O stretching vibrations are provided with different sets of polarization combination. These sets of experimental spectra are consistently elucidated by the MD calculations. In modeling the surface structure, there exists a major uncertainty about local ion composition at the surface region. To address this uncertainty, we performed MD simulations with various assumptions on the local dissociation constants of sulfuric acid, and searched for the condition to be consistent with the experimental spectra. We have thereby concluded that the first acid dissociation of sulfuric acid is almost complete at the surface, while the second dissociation is more strongly suppressed than in the bulk liquid. The present MD simulation elucidates the ion distribution and molecular orientation at the sulfuric acid solution surface, and also the concentration dependence of the SFG spectrum.  相似文献   

4.
Surface structure relaxations caused by temperature changes at the free surface of poly(methyl methacrylate) were studied using IR-visible sum-frequency generation (SFG). A polarization-rotating technique was introduced to enhance the sensitivity of SFG for monitoring the surface structure relaxations during a cooling process. A new surface structure relaxation was observed at 67 degrees C. This temperature does not match any known structure relaxation temperatures for the bulk and is 40 degrees C below the bulk glass transition temperature. As expected for a free-surface phenomenon, the surface relaxation temperature was found to be independent of film thickness in the range of 0.1-0.5 microm.  相似文献   

5.
Sum frequency generation (SFG) vibrational spectroscopy and high-pressure scanning tunneling microscopy (HP-STM) have been used in combination for the first time to study a catalytic reaction. These techniques have been able to identify surface intermediates in situ during benzene hydrogenation on a Pt(111) single-crystal surface at Torr pressures. In a background of 10 Torr of benzene, STM is able to image small ordered regions corresponding to the c(2 radical3 x 3)rect structure in which each molecule is chemisorbed at a bridge site. In addition, individual benzene molecules are also observed between the ordered regions. These individual molecules are assumed to be physisorbed benzene on the basis of the SFG results showing both chemisorbed and physisorbed molecules. The surface becomes too mobile to image upon addition of hydrogen but is determined to have physisorbed and chemisorbed benzene present by SFG. It was spectroscopically determined that heating the platinum surface after poisoning with CO displaces benzene molecules. The high-coverage pure CO structure of (radical19 x radical19)R23.4 degrees imaged with STM is a verification of spectroscopic measurements.  相似文献   

6.
Infrared-visible sum frequency generation (SFG) vibrational spectroscopy, in combination with fluorescence microscopy, was employed to investigate the surface structure of lysozyme, fibrinogen, and bovine serum albumin (BSA) adsorbed on hydrophilic silica and hydrophobic polystyrene as a function of protein concentration. Fluorescence microscopy shows that the relative amounts of protein adsorbed on hydrophilic and hydrophobic surfaces increase in proportion with the concentration of protein solutions. For a given bulk protein concentration, a larger amount of protein is adsorbed on hydrophobic polystyrene surfaces compared to hydrophilic silica surfaces. While lysozyme molecules adsorbed on silica surfaces yield relatively similar SFG spectra, regardless of the surface concentration, SFG spectra of fibrinogen and BSA adsorbed on silica surfaces exhibit concentration-dependent signal intensities and peak shapes. Quantitative SFG data analysis reveals that methyl groups in lysozyme adsorbed on hydrophilic surfaces show a concentration-independent orientation. However, methyl groups in BSA and fibrinogen become less tilted with respect to the surface normal with increasing protein concentration at the surface. On hydrophobic polystyrene surfaces, all proteins yield similar SFG spectra, which are different from those on hydrophilic surfaces. Although more protein molecules are present on hydrophobic surfaces, lower SFG signal intensity is observed, indicating that methyl groups in adsorbed proteins are more randomly oriented as compared to those on hydrophilic surfaces. SFG data also shows that the orientation and ordering of phenyl rings in the polystyrene surface is affected by protein adsorption, depending on the amount and type of proteins.  相似文献   

7.
The potential-dependent (2x2)-3CO-->(radical19x radical19)R23.4 degrees-13CO adlayer phase transition on Pt(111) with 0.1M H(2)SO(4) electrolyte was studied using femtosecond broadband multiplex sum frequency generation (SFG) spectroscopy combined with linear scan voltammetry. Across the phase boundary the SFG atop intensity jumps, and at the same time the SFG spectrum of threefold CO sites is transformed into a bridge site spectrum with a small decrease in integrated SFG intensity. The SFG atop intensity jump and three fold-to-bridge intensity drop are noticeably different from what would be expected for these structures on the basis of coverage alone. This occurs because the SFG signal is sensitive to both the coverage and changes in the local field that result from a changing adlayer structure. We derive an equation that allows us to correct the SFG intensities for these effects using information derived from infrared absorption-reflection spectroscopy (IRAS) and second-harmonic generation (SHG) measurements. With this correction, the SFG results agree well with what would be expected for a transition between perfect adlattices. A small (approximately 20%) discrepancy in the SFG determination of atop coverage is attributed to either a small amount of surface disorder or uncertainties in the SFG, SHG, and IRAS measurements. SFG is also used to examine the reversibility hysteresis and kinetics of the phase transition and its dependence on electrolyte composition. The phase transition is reversible with an approximately 150 mV anodic overpotential and the forward (2x2)-->(radical19x radical19) transition is slower than the reverse. Repeated cycles of phase transition indicate that the 25 microm electrolyte layer used here does not appreciably distort the potential-coverage relationships.  相似文献   

8.
The molecular structures and their stabilities at the outmost-layer of the Langmuir-Blodgett (LB) films of stearic acid on solid substrates have been investigated by a highly surface-sensitive spectroscopic technique, sum frequency generation (SFG), in air and in aqueous solution, using the combination of both normal and deuterated stearic acid. Peaks observed in the SFG spectra are mainly attributed to the terminal methyl group at the outmost layer of the LB films. The SFG spectra in air are virtually identical and are independent of the odd-even property and thickness (1-12) of the LB films, indicating that the even-numbered LB film changes its surface structure after passing through the interface between the water subphase and air, especially when the Cd2+ cation was included in the water subphase. Furthermore, we have demonstrated for the first time using in situ SFG measurement that the interfacial molecular structure at the LB bilayer of stearic acid on the hydrophilic substrates significantly change with immersion in the water subphase containing Cd2+ cation while such a structural change has not been observed in the water subphase without Cd2+. These results clearly indicate that a reorganization process takes place on the surface of the stearic acid bilayer induced by the Cd2+ cation. The electrostatic interaction between the carboxylate headgroup of stearic acid via the Cd2+ cation seems to play an important role in the surface reorganization process both in air and in solution.  相似文献   

9.
Quantifying the ordering of adsorbed proteins in situ   总被引:1,自引:0,他引:1  
We have investigated the orientation and conformation of protein molecules at the polystyrene (PS)/protein solution interface using sum frequency generation (SFG) vibrational spectroscopy, supplemented by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). In this research, we studied fibrinogen as a model protein. SFG studies indicate that fibrinogen adopts a bent structure after adsorbing to the PS surface. A broad orientation distribution of fibrinogen coiled-coils at the interface has been quantified by combining SFG and ATR-FTIR measurements. Error analysis for such a deduced distribution was carried out. This research demonstrates that quantitative structural information such as orientational and conformational ordering of proteins at interfaces can be studied using SFG supplemented by other spectroscopic techniques.  相似文献   

10.
The nonlinear optical technique of sum frequency generation (SFG) vibrational spectroscopy has been used for the first time to study CdS nanoparticle/arachidic acid multilayer structures. Using a combination of per-deuterated and per-protonated arachidic acid, it is possible to study individual layers anywhere within the film, buried or on the surface. Before reaction with H2S all layers are highly ordered, but after the reaction the layers become highly disordered, except for the surface layer, which remains well ordered. This sheds new light on the structure and stability of these films and shows that SFG can provide unique structural information.  相似文献   

11.
The adsorption of gases N2, H2, O2, and NH3 that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by Sum Frequency Generation (SFG) vibrational spectroscopy using an integrated ultrahigh vacuum/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH2 ( approximately 3325 cm-1) and NH ( approximately 3235 cm-1) under high pressure of ammonia (200 Torr) on the clean Fe(111) surface. Addition of 0.5 Torr of oxygen to 200 Torr of ammonia does not significantly change the bonding of dissociation intermediates to the surface. However, it leads to a phase change of nearly 180 degrees between the resonant and nonresonant second-order nonlinear susceptibility of the surface, demonstrated as a reversal of the SFG spectral features. Heating the surface in the presence of 200 Torr of ammonia and 0.5 Torr of oxygen reduces the oxygen coverage, which can be seen from the SFG spectra as another relative phase change of 180 degrees . The reduction of the oxide is also supported by Auger electron spectroscopy. The result suggests that the phase change of the spectral features could serve as a sensitive indicator of the chemical environment of the adsorbates. Clean Fe(111) is found to have a large SFG nonresonant signal. The magnitude of the nonresonant signal was dependent on the adsorption species; O2 and N2 decrease, while H2 and NH3 increase the SFG nonresonant signal. The change in nonresonant signal is correlated to the change in work function for Fe(111) upon adsorption. Adsorption-induced changes in the SFG nonresonant signal was used as an indicator of surface conditions and to monitor surface reactions.  相似文献   

12.
The air/water interface was simulated and the mode amplitudes and their ratios of the effective nonlinear sum-frequency generation (SFG) susceptibilities (A(eff)'s) were calculated for the ssp, ppp, and sps polarization combinations and compared with experiments. By designating "surface-sensitive" free OH bonds on the water surface, many aspects of the SFG measurements were calculated and compared with those inferred from experiment. We calculate an average tilt angle close to the SFG observed value of 35, an average surface density of free OH bonds close to the experimental value of about 2.8 × 10(18) m(-2), computed ratios of A(eff)'s that are very similar to those from the SFG experiment, and their absolute values that are in reasonable agreement with experiment. A one-parameter model was used to calculate these properties. The method utilizes results available from independent IR and Raman experiments to obtain some of the needed quantities, rather than calculating them ab initio. The present results provide microscopic information on water structure useful to applications such as in our recent theory of on-water heterogeneous catalysis.  相似文献   

13.
Infrared-visible sum frequency generation vibrational spectroscopy (SFG) was used to characterize the structure of 3-aminopropyltriethoxysilane (APTES) films deposited on solid substrates under controlled experimental conditions for the first time. Our SFG spectra in combination with complementary analytical data showed that APTES films undergo structural changes when cured at an elevated temperature. Before the films are cured, well-ordered hydrophobic ethoxy groups are dominantly present on the surface. A majority of hydrophilic surface amino groups are protonated, and they are either buried or randomly oriented at the interface. After the films are cured, chemically and structurally different neutral amino groups are detected on the surface. Unlike the protonated amino groups, a new class of neutral amino groups is ordered at the interface and shows enhanced reactivity.  相似文献   

14.
Conformational changes of fibrinogen after adsorption   总被引:2,自引:0,他引:2  
The adsorption behavior of fibrinogen to two biomedical polyurethanes and a perfluorinated polymer has been investigated. Changes in the secondary structure of adsorbed fibrinogen were monitored using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and sum frequency generation vibrational spectroscopy (SFG). SFG measurements were performed in the amide I range as well as in the C-H/N-H stretching range. Amide I signals from SFG demonstrate that fibrinogen has post-adsorption conformational changes that are dependent upon the polymer surface properties. For example, strong attenuation of the amide I and N-H stretching signals with increasing residence time was observed for fibrinogen adsorbed to poly(ether urethane) but not for the other two polymers. This change is not readily observed by ATR-FTIR. Differences in the observed spectral changes for fibrinogen adsorbed to each polymer are explained by different initial binding mechanisms and post-adsorption conformational changes.  相似文献   

15.
Recent advances in the collection and interpretation of surface-sensitive vibrational spectroscopic measurements have made it possible to study the orientation of peptides and proteins in situ in a biologically relevant environment. However, interpretation of sum frequency generation (SFG) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) vibrational spectroscopy is hindered by the fact that orientation cannot be inferred without some prior knowledge of the protein structure. In this work, molecular dynamics simulations were used to study the interfacial orientation and structural deformation of the short β-sheet peptide tachyplesin I at the polystyrene/water interface. By combining these results with ATR-FTIR and SFG measurements, reasonable agreement was found with the simulation results, suggesting that tachyplesin I lies parallel to the surface, although the simulation results imply a broader distribution of peptide twist angles than could be characterized using available experimental measurements. The interfacial structure was found to be deformable even when disulfide bonds were preserved, and these local deviations from a purely extended β-sheet conformation may be of importance to future developments in the interpretation of SFG and ATR-FTIR spectra.  相似文献   

16.
We report the first vibrational sum frequency generation (VSFG) spectroscopic study from particle surfaces of powdered solids using a modified SFG approach, diffuse reflection broad bandwidth sum frequency generation (DR-BBSFG). The DR-BBSFG spectrum of sodium dodecyl sulfate (SDS, C(12)H(25)SO(4)Na) powdered solids was obtained. Five peaks were resolved by calculated fits. Possible origins of the SFG response from SDS particle surfaces are discussed. Potential applications of DR-BBSFG spectroscopy are addressed.  相似文献   

17.
The electrochemical interface between a polycrystalline Pt electrode and the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim][OTf]) has been studied by in-situ IR-visible sum-frequency generation (SFG) spectroscopy. Potential dependent adsorption/desorption processes of OTf anions has been monitored within the electrochemical window. SFG results indicate that the ions form a double layer structure at the interface. Significant adsorption/desorption hysteresis has been observed for the anions on the Pt surface.  相似文献   

18.
黄芝  唐鑫  邓罡华  周恩财  王鸿飞  郭源 《电化学》2011,17(2):134-138
用和频振动光谱研究乙腈/金电极界面,观测到乙腈的甲基振动峰强度随施加的电极电势而变化.当电极电势越过零电荷电势(pzc)时,甲基振动峰符号发生反转,这意味着基团取向发生反转(flip-flop).由此推断出乙腈分子在金电极界面的吸附构型.即在零电荷电势下,电极界面吸附的乙腈分子构型为甲基靠近电极表面而腈基远离电极表面;而高于零电荷电势则电极界面吸附的乙腈分子构型发生反转,变为腈基靠近电极表面而甲基远离电极表面的构型.  相似文献   

19.
Following the surface enhanced Raman scattering (SERS), we shall investigate the possibility of observing surface‐enhanced sum‐frequency generation (SESFG), which refers to the transformation of ordinary vibrational SFG (i.e. singly resonant) into SESFG. Two mechanisms of SESFG will be studied; one is due to the transformation of singly‐resonant vibrational SFG into doubly resonant vibrational SFG (that is, both vibrationally resonant and Raman‐scattering resonant) and the other is due to the enhancement of the polarizability in addition to the original vibrational resonance in vibrational SFG.  相似文献   

20.
Ye S  Wei F 《The Analyst》2011,136(12):2489-2494
In this paper, we designed a compatible multiple nonlinear vibrational spectroscopy system that can be used for recording infrared-visible sum frequency generation vibrational spectra (SFG) and infrared-infrared-visible three-pump-field four-wave-mixing (IIV-TPF-FWM) spectra using a commercial EKSPLA SFG system. This is the first time IIV-TPF-FWM signals were obtained using picosecond laser pulses. We have applied this compatible system to study the surface and vibrational structures of riboflavin molecules (also known as vitamin B2). The SFG spectra of eight polarization combinations have non-vanishing signals. The signals with incoming s-polarized IR are relatively weaker than the signals with incoming p-polarized IR. Under the double resonant conditions, the SFG signals of the conjugated tricyclic ring are greatly enhanced. For the IIV-TPF-FWM spectra with incoming p-polarized IR, only the sspp and pppp polarization combinations have non-vanishing signals. The IIV-TPF-FWM spectra show a very strong peak at 1585 cm(-1) that is mainly dominated by the N(5)-C(4a) stretch. The method developed in this study will be helpful for researchers, either using a home-built or commercial (EKSPLA) SFG system, to obtain independent and complementary measurements for SFG spectroscopy and more detailed structural information of interfacial molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号