首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Near Infrared (NIR) luminescence is useful for many applications ranging from lasers, telecommunication to biological imaging. We have a special interest for applications in biological media since NIR photons have less interference with such samples. NIR photons can penetrate relatively deeply in tissues and cause less damage to biological samples. The use of NIR luminescence also results in improved detection sensitivity due to low background emission. The lower scattering of NIR photons results in improved image resolution. NIR emitting lanthanide compounds are promising for imaging because of their unique properties such as sharp emission bands, long luminescence lifetimes and photostability. Here, we review our efforts to develop novel sensitizers for NIR emitting lanthanides. We have employed two global strategies: (1) monometallic lanthanide complexes based on derivatives of salophen, tropolonate, azulene and pyridine; and (2) polymetallic lanthanide compounds based on nanocrystals, metal-organic frameworks and dendrimers complexes.  相似文献   

2.
Fluorescence imaging is one of the most powerful techniques for monitoring biomolecules in living systems. Fluorescent sensors with absorption and emission in the near-infrared (NIR) region are favorable for biological imaging applications in living animals, as NIR light leads to minimum photodamage, deep tissue penetration, and minimum background autofluorescence interference. Herein, we have introduced a new strategy to design NIR functional dyes with the carboxylic-acid-controlled fluorescence on-off switching mechanism by the spirocyclization. Based on the design strategy, we have developed a series of Changsha (CS1-6) NIR fluorophores, a unique new class of NIR functional fluorescent dyes, bearing excellent photophysical properties including large absorption extinction coefficients, high fluorescence quantum yields, high brightness, good photostability, and sufficient chemical stability. Significantly, the new CS1-6 NIR dyes are superior to the traditional rhodamine dyes with both absorption and emission in the NIR region while retaining the rhodamine-like fluorescence ON-OFF switching mechanism. In addition, we have performed quantum chemical calculations with the B3LYP exchange functional employing 6-31G* basis sets to shed light on the structure-optical properties of the new CS1-6 NIR dyes. Furthermore, using CS2 as a platform, we further constructed the novel NIR fluorescent TURN-ON sensor 7, which is capable of imaging endogenously produced HClO in the living animals, demonstrating the value of our new CS NIR functional fluorescent dyes. We expect that the design strategy may be extended for development of a wide variety of NIR functional dyes with a suitable fluorescence-controlled mechanism for many useful applications in biological studies.  相似文献   

3.
The inadvertent severing of a ureter during surgery occurs in as many as 4.5% of colorectal surgeries. To help prevent this issue, several near-infrared (NIR) dyes have been developed to assist surgeons with identifying ureter location. However, the majority of these dyes exhibit at least some issue that precludes their widespread usage such as high levels of uptake in other tissues, overlapping emission wavelengths with other NIR dyes used for other fluorescence-guided surgeries, and/or rapid excretion times through the ureters. To overcome these limitations, we have synthesized and characterized the spectral properties and biodistribution of a new series of PEGylated UreterGlow derivatives. The most promising dye, UreterGlow-11 was shown to almost exclusively excrete through the kidneys/ureters with detectable fluorescence observed for at least 12 h. Additionally, while the excitation wavelength is similar to that of other NIR dyes used for cancer resections, the emission is shifted by ~30 nm allowing for discrimination between the different fluorescence-guided surgery probes. In conclusion, these new UreterGlow dyes show promising optical and biodistribution characteristics and are good candidates for translation into the clinic.  相似文献   

4.
This article describes a series of nine complexes of boron difluoride with 2′‐hydroxychacone derivatives. These dyes were synthesized very simply and exhibited intense NIR emission in the solid state. Complexation with boron was shown to impart very strong donor–acceptor character into the excited state of these dyes, which further shifted their emission towards the NIR region (up to 855 nm for dye 5 b , which contained the strongly donating triphenylamine group). Strikingly, these optical features were obtained for crystalline solids, which are characterized by high molecular order and tight packing, two features that are conventionally believed to be detrimental to luminescence in organic crystals. Remarkably, the emission of light from the π‐stacked molecules did not occur at the expense of the emission quantum yield. Indeed, in the case of pyrene‐containing dye 4 , for example, a fluorescence quantum yield of about 15 % with a fluorescence emission maximum at 755 nm were obtained in the solid state. Moreover, dye 3 a and acetonaphthone‐based compounds 1 b , 2 b , and 3 b showed no evidence of degradation as solutions in CH2Cl2 that contained EtOH. In particular, solutions of brightly fluorescent compound 3 a (brightness: ε×Φf=45 000 M ?1 cm?1) could be stored for long periods without any detectable changes in its optical properties. All together, these new dyes possess a set of very interesting properties that make them promising solid‐state NIR fluorophores for applications in materials science.  相似文献   

5.
通过将掺杂剂单元用化学键接到聚芴的侧链上,实现了掺杂剂单元在高分子主体中的分子水平分散,开发了一种新型的基于掺杂剂/主体材料体系的分子分散型蓝光聚芴衍生物.与纯聚芴相比,这种新的分子分散型蓝光聚芴衍生物具有很高的荧光量子效率.以这种新的分子分散型蓝光聚芴衍生物为增益介质的激光器件,在Nd:YAG 355 nm脉冲激光泵浦下,获得了较好的放大自发发射光谱,阈值达到0.25 m J/(pulse cm2).从光物理的角度对薄膜的光学增益和光学损耗进行了定量运算和分析,经过拟合发现,当泵浦能量为0.06m J/pulse时,该聚芴衍生物增益系数可达23.08 cm-1,损耗系数为6.96 cm-1.优良的放大自发发射特性表明该聚芴衍生物是非常好的有机激光增益介质材料.  相似文献   

6.
Near-infrared (NIR) fluorescent sensors have emerged as promising molecular tools for imaging biomolecules in living systems. However, NIR fluorescent sensors are very challenging to be developed. Herein, we describe the discovery of a new class of NIR fluorescent dyes represented by 1a/1c/1e, which are superior to the traditional 7-hydroxycoumarin and fluorescein with both absorption and emission in the NIR region while retaining an optically tunable hydroxyl group. Quantum chemical calculations with the B3LYP exchange functional employing 6-31G(d) basis sets provide insights into the optical property distinctions between 1a/1c/1e and their alkoxy derivatives. The unique optical properties of the new type of fluorescent dyes can be exploited as a useful strategy for development of NIR fluorescent sensors. Employing this strategy, two different types of NIR fluorescent sensors, NIR-H(2)O(2) and NIR-thiol, for H(2)O(2) and thiols, respectively, were constructed. These novel sensors respond to H(2)O(2) or thiols with a large turn-on NIR fluorescence signal upon excitation in the NIR region. Furthermore, NIR-H(2)O(2) and NIR-thiol are capable of imaging endogenously produced H(2)O(2) and thiols, respectively, not only in living cells but also in living mice, demonstrating the value of the new NIR fluorescent sensor design strategy. The new type of NIR dyes presented herein may open up new opportunities for the development of NIR fluorescent sensors based on the hydroxyl functionalized reactive sites for biological imaging applications in living animals.  相似文献   

7.
Developing multicolor upconversion nanoparticles (UCNPs) with the capability of regulating their emission wavelengths in the UV to visible range in response to external stimuli can offer more dynamic platforms for applications in high‐resolution bioimaging, multicolor barcoding, and driving multiple important photochemical reactions, such as photoswitching. Here, we have rationally designed single‐crystal core–shell‐structured UCNPs which are capable of orthogonal UV and visible emissions in response to two distinct NIR excitations at 808 and 980 nm. The orthogonal excitation–emission properties of such UCNPs, as well as their ability to utilize low‐power excitation, which attenuates any local heating from the lasers, endows the UCNPs with great potential for applications in materials and biological settings. As a proof of concept, the use of this UCNP for the efficient regulation of the two‐way photoswitching of spiropyran by using dual wavelengths of NIR irradiation has been demonstrated.  相似文献   

8.
A series of ring-substituted squaraines absorbing and emitting in the red and NIR spectral region was synthesized and their spectral and photophysical properties (quantum yields, fluorescence lifetimes) and photostabilities were measured and compared to Cy5, a commonly used fluorescent label. The absorption maxima in aqueous media were found to be between 628 and 667 nm and the emission maxima are between 642 and 685 nm. Squaraine dyes exhibit high extinction coefficients (163,000–265,000 M−1 cm−1) and lower quantum yields (2–7%) in aqueous buffer but high quantum yields (up to 45%) and long fluorescence lifetimes (up to 3.3 ns) in presence of BSA. Dicyanomethylene- and thio-substituted squaraines exhibit an additional absorption around 400 nm with extinction coefficients between 21,500 and 44,500 M−1 cm−1. These dyes are excitable not only with red but also with blue diode lasers or light emitting diodes. Due to the favourable spectral and photophysical properties these dyes can be used as fluorescent probes and labels for intensity- and fluorescence lifetime-based biomedical applications.  相似文献   

9.
This work presents evidence for line-narrowing from the UV photoexcited open form of the photochromic molecule, indolinospiropyran (1',3'-dihydro-1',3',3'-trimethyl-6-nitrospiro [2H-1-benzopyran-2,2'-(2H)-indole]) in the solid state. The line-narrowing is attributable to amplified spontaneous emission induced by optical gain and assisted by the waveguiding within the organic film. Optical gain throughout a band as large as 28 nm, with a maximum gain coefficient of 5.6 cm(-1), is observed in the merocyanine emission region (660-730 nm). These results open the way to the realization of hybrid devices based on the coupling between photochromic behavior and stimulated emission from conjugated molecules, such as lasing optical memories, and lasers gated by optical molecular switches.  相似文献   

10.
Molecular-based Fluorescent Organic Nanoparticles (FONs) are versatile light-emitting nano-tools whose properties can be rationally addressed by bottom-up molecular engineering. A challenging property to gain control over is the interaction of the FONs’ surface with biological systems. Indeed, most types of nanoparticles tend to interact with biological membranes. To address this limitation, we recently reported on two-photon (2P) absorbing, red to near infrared (NIR) emitting quadrupolar extended dyes built from a benzothiadiazole core and diphenylamino endgroups that yield spontaneously stealth FONs. In this paper, we expand our understanding of the structure-property relationship between the dye structure and the FONs 2P absorption response, fluorescence and stealthiness by characterizing a dye-related series of FONs. We observe that increasing the strength of the donor end-groups or of the core acceptor in the quadrupolar (D-π-A-π-D) dye structure allows for the tuning of optical properties, notably red-shifting both the emission (from red to NIR) and 2P absorption spectra while inducing a decrease in their fluorescence quantum yield. Thanks to their strong 1P and 2P absorption, all FONs whose median size varies between 11 and 28 nm exhibit giant 1P (106 M−1.cm−1) and 2P (104 GM) brightness values. Interestingly, all FONs were found to be non-toxic, exhibit stealth behaviour, and show vanishing non-specific interactions with cell membranes. We postulate that the strong hydrophobic character and the rigidity of the FONs building blocks are crucial to controlling the stealth nano-bio interface.  相似文献   

11.
The exploration of deactivation mechanisms for near-infrared(NIR)-emissive organic molecules has been a key issue in chemistry, materials science and molecular biology. In this study, based on transient absorption spectroscopy and transient grating photoluminescence spectroscopy, we demonstrate that the aggregated PtII complex 4H (efficient NIR emitter) exhibits collective out-of-plane motions with a frequency of 32 cm−1 (0.96 THz) in the excited states. Importantly, similar THz characteristics were also observed in analogous PtII complexes with prominent NIR emission efficiency. The conservation of THz motions enables excited-state deactivation to proceed along low-frequency vibrational coordinates, contributing to the suppression of nonradiative decay and remarkable NIR emission. These novel results highlight the significance of excited-state vibrations in nonradiative processes, which serve as a benchmark for improving device performance.  相似文献   

12.
Newly emerging super-resolution imaging techniques provide opportunities for precise observations on cellular microstructures. However, they also impose severe demands on fluorophores. Here, we develop a new series of NIR xanthene dyes, named as KRh s, by replacing the 10-position O of rhodamines with a cyclo-ketal. KRh s display an intense NIR emission peak at 700 nm with fluorescence quantum yields up to 0.64. More importantly, they, without the aid of enhancing buffer, exhibit stochastic fluorescence off–on switches to support time-resolved localization of single fluorophore. KRh s are functionalized into KRh-MitoFix , KRh-Mem and KRh-Halo that demonstrate mitochondria, plasma membrane and fusion protein targeting ability, respectively. Consequently, these KRh probes demonstrate straightforward usage for super-resolution imaging of these targets in live cells. Therefore, KRh s merit future development for fluorescence labeling and super-resolution imaging in the NIR region.  相似文献   

13.
Two binuclear heteroleptic CuI complexes, namely Cu−NIR1 and Cu−NIR2, bearing rigid chelating diphosphines and π-conjugated 2,5-di(pyridin-2-yl)thiazolo[5,4-d]thiazole as the bis-bidentate ligand are presented. The proposed dinuclearization strategy yields a large bathochromic shift of the emission when compared to the mononuclear counterparts (M1–M2) and enables shifting luminescence into the near-infrared (NIR) region in both solution and solid state, showing emission maximum at ca. 750 and 712 nm, respectively. The radiative process is assigned to an excited state with triplet metal-to-ligand charge transfer (3MLCT) character as demonstrated by in-depth photophysical and computational investigation. Noteworthy, X-ray analysis of the binuclear complexes unravels two interligand π–π-stacking interactions yielding a doubly locked structure that disfavours flattening of the tetrahedral coordination around the CuI centre in the excited state and maintain enhanced NIR luminescence. No such interaction is present in M1–M2. These findings prompt the successful use of Cu−NIR1 and Cu−NIR2 in NIR light-emitting electrochemical cells (LECs), which display electroluminescence maximum up to 756 nm and peak external quantum efficiency (EQE) of 0.43 %. Their suitability for the fabrication of white-emitting LECs is also demonstrated. To the best of our knowledge, these are the first examples of NIR electroluminescent devices based on earth-abundant CuI emitters.  相似文献   

14.
In recent times, researchers have aimed for new strategies to combat cancer by the implementation of nanotechnologies in biomedical applications. This work focuses on developing protein-based nanoparticles loaded with a newly synthesized NIR emitting and absorbing phthalocyanine dye, with photodynamic and photothermal properties. More precisely, we synthesized highly reproducible bovine serum albumin-based nanoparticles (75% particle yield) through a two-step protocol and successfully encapsulated the NIR active photosensitizer agent, achieving a good loading efficiency of 91%. Making use of molecular docking simulations, we confirm that the NIR photosensitizer is well protected within the nanoparticles, docked in site I of the albumin molecule. Encouraging results were obtained for our nanoparticles towards biomedical use, thanks to their negatively charged surface (−13.6 ± 0.5 mV) and hydrodynamic diameter (25.06 ± 0.62 nm), favorable for benefitting from the enhanced permeability and retention effect; moreover, the MTT viability assay upholds the good biocompatibility of our NIR active nanoparticles. Finally, upon irradiation with an NIR 785 nm laser, the dual phototherapeutic effect of our NIR fluorescent nanoparticles was highlighted by their excellent light-to-heat conversion performance (photothermal conversion efficiency 20%) and good photothermal and size stability, supporting their further implementation as fluorescent therapeutic agents in biomedical applications.  相似文献   

15.
Perylene-fused, aggregation-free polycyclic aromatic hydrocarbons with partial zigzag periphery ( ZY-01 , ZY-02 , and ZY-03 ) were synthesized. X-ray crystallographic analysis reveals that there is no intermolecular π–π stacking in any of the three molecules, and as a result, they show moderate-to-high photoluminescence quantum yield in both solution and in the solid state. They also display the characteristic absorption and emission spectra of perylene dyes. ZY-01 and ZY-02 with a nearly planar π-conjugated skeleton exhibit amplified spontaneous emission (ASE) when dispersed in polystyrene thin films. Solution-processed distributed feedback lasers have been fabricated using ZY-01 and ZY-02 as active gain materials, both showing narrow emission linewidth (<0.4 nm) at wavelengths around 515 and 570 nm, respectively. In contrast, ZY-03 did not show ASE and lasing, presumably due to its highly twisted backbone, which facilitates nonradiative internal conversion and intersystem crossing.  相似文献   

16.
Single‐walled carbon nanotubes (SWCNTs) are a 1D nanomaterial that shows fluorescence in the near‐infrared (NIR, >800 nm). In the past, covalent chemistry was less explored to functionalize SWCNTs as it impairs NIR emission. However, certain sp3 defects (quantum defects) in the carbon lattice have emerged that preserve NIR fluorescence and even introduce a new, red‐shifted emission peak. Here, we report on quantum defects, introduced using light‐driven diazonium chemistry, that serve as anchor points for peptides and proteins. We show that maleimide anchors allow conjugation of cysteine‐containing proteins such as a GFP‐binding nanobody. In addition, an Fmoc‐protected phenylalanine defect serves as a starting point for conjugation of visible fluorophores to create multicolor SWCNTs and in situ peptide synthesis directly on the nanotube. Therefore, these quantum defects are a versatile platform to tailor both the nanotube's photophysical properties as well as their surface chemistry.  相似文献   

17.
Powdered samples of the perovskite BaSnO(3) exhibit strong near-infrared (NIR) luminescence at room temperature, following band-gap excitation at 380 nm (3.26 eV). The emission spectrum is characterized by a broad band centered at 905 nm (1.4 eV), tailing on the high-energy side to approximately 760 nm. The Stokes shift is 1.9 eV, and measured lifetimes in the range 7-18 ms depend on preparative conditions. These extraordinary long values indicate that the luminescence involves a defect state(s). At low temperatures, both a sharp peak and a broad band appear in the visible portion of the luminescence spectrum at approximately 595 nm. Upon cooling, the intensity of the NIR emission decreases, while the integrated intensities of the visible emission features increase to approximately 40% of the NIR intensity at 77 K. Room-temperature photoluminescence (PL) is observed across the Ba(1-x)Sr(x)SnO(3) series. As the strontium content increases, the excitation maximum and band gap shift further into the UV, while the intensity of the NIR emission peak decreases and shifts further into the infrared. This combination leads to an unexpectedly large increase in the Stokes shift. The unusual NIR PL in BaSnO(3) may originate from recombination of a photogenerated valence-band hole and an occupied donor level, probably associated with a Sn(2+) ion situated roughly 1.4 eV above the valence-band edge.  相似文献   

18.
Solid-state near-infrared (NIR) light-emitting devices have recently received considerable attention as NIR light sources that can penetrate deep into human tissue and are suitable for bioimaging and labeling. In addition, solid-state NIR light-emitting electrochemical cells (LECs) have shown several promising advantages over NIR organic light-emitting devices (OLEDs). However, among the reported NIR LECs based on ionic transition-metal complexes (iTMCs), there is currently no iridium-based LEC that displays NIR electroluminescence (EL) peaks near to or above 800 nm. In this report we demonstrate a simple method for adjusting the energy gap between the highest-occupied molecular orbital (HOMO) and the lowest-unoccupied molecular orbital (LUMO) of iridium-based iTMCs to generate NIR emission. We describe a series of novel ionic iridium complexes with very small energy gaps, namely NIR1 – NIR6 , in which 2,3-diphenylbenzo[g]quinoxaline moieties mainly take charge of the HOMO energy levels and 2,2′-biquinoline, 2-(quinolin-2-yl)quinazoline, and 2,2′-bibenzo[d]thiazole moieties mainly control the LUMO energy levels. All the complexes exhibited NIR phosphorescence, with emission maxima up to 850 nm, and have been applied as components in LECs, showing a maximum external quantum efficiency (EQE) of 0.05 % in the EL devices. By using a host–guest emissive system, with the iridium complex RED as the host and the complex NIR3 or NIR6 as guest, the highest EQE of the LECs can be further enhanced to above 0.1 %.  相似文献   

19.
A series of highly efficient deep red to near‐infrared (NIR) emissive organic crystals 1 – 3 based on the structurally simple 2′‐hydroxychalcone derivatives were synthesized through a simple one‐step condensation reaction. Crystal 1 displays the highest quantum yield (Φf) of 0.32 among the reported organic single crystals with an emission maximum (λem) over 710 nm. Comparison between the bright emissive crystals 1 – 3 and the nearly nonluminous compounds 4 – 7 clearly gives evidence that a subtle structure modification can arouse great property changes, which is instructive in designing new high‐efficiency organic luminescent materials. Notably, crystals 1 – 3 exhibit amplified spontaneous emissions (ASE) with extremely low thresholds. Thus, organic deep red to NIR emissive crystals with very high Φf have been obtained and are found to display the first example of NIR fluorescent crystal ASE.  相似文献   

20.
Stimulated Raman scattering offers an alternative strategy to explore continuous-wave (c.w.) organic lasers, which, however, still suffers from the limitation of inadequate Raman gain in organic material systems. Here we propose a metal-linking approach to enhance the Raman gain of organic molecules. Self-assembled microcrystals of the metal linked organic dimers exhibit large Raman gain, therefore allowing for c.w. Raman lasing. Furthermore, broadband tunable Raman lasing is achieved in the organic dimer microcrystals by adjusting excitation wavelengths. This work advances the understanding of Raman gain in organic molecules, paving a way for the design of c.w. organic lasers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号