首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The self-exothermic in early stage of thermal runaway (TR) is blasting-fuse for Li-ion battery safety issues. The exothermic reaction between lithiated graphite (LiCx) and electrolyte accounts for onset of this behavior. However, preventing the deleterious reaction still encounters hurdles. Here, we manage to inhibit this reaction by passivating LiCx in real time via targeted repair of SEI. It is shown that 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl)cyclotrisiloxane (D3F) can be triggered by LiCx to undergo ring-opening polymerization at elevated temperature, so as to targeted repair of fractured SEI. Due to the high thermal stability of polymerized D3F, exothermic reaction between LiCx and electrolyte is inhibited. As a result, the self-exothermic and TR trigger temperatures of pouch cell are increased from 159.6 and 194.2 °C to 300.5 and 329.7 °C. This work opens up a new avenue for designing functional additives to block initial exothermal reaction and inhibit TR in early stage.  相似文献   

2.
High-capacity small organic materials are plagued by their high solubility. Here we proposed constructing hydrogen bond networks (HBN) via intermolecular hydrogen bonds to suppress the solubility of active material. The illustrated 2, 7- diamino-4, 5, 9, 10-tetraone (PTO-NH2) molecule with intermolecular hydrogen (H) bond between O in −C=O and H in −NH2, which make PTO-NH2 presents transverse two-dimensional extension and longitudinal π–π stacking structure. In situ Fourier transform infrared spectroscopy (FTIR) has tracked the reversible evolution of H-bonds, further confirming the existence of HBN structure can stabilize the intermediate 2-electron reaction state. Therefore, PTO-NH2 with HBN structure has higher active site utilization (95 %), better cycle stability and rate performance. This study uncovers the H-bond effect and evolution during the electrochemical process and provides a strategy for materials design.  相似文献   

3.
Modulation of the ligands and coordination environment of metal–organic frameworks (MOFs) has been an effective and relatively unexplored avenue for improving the anode performance of lithium-ion batteries (LIBs). In this study, three MOFs are synthesized, namely, M4(o-TTFOB)(bpm)2(H2O)2 (where M is Mn, Zn, and Cd; o-H8TTFOB is ortho-tetrathiafulvalene octabenzoate; and bpm is 2,2′-bipyrimidine), based on a new ligand o-H8TTFOB with two adjacent carboxylates on one phenyl, which allows us to establish the impact of metal coordination on the performance of these MOFs as anode materials in LIBs. Mn-o-TTFOB and Zn-o-TTFOB, with two more uncoordinated oxygen atoms from o-TTFOB8−, show higher reversible specific capacities of 1249 mAh g−1 and 1288 mAh g−1 under 200 mA g−1 after full activation. In contrast, Cd-o-TTFOB shows a reversible capacity of 448 mAh g−1 under the same condition due to the lack of uncoordinated oxygen atoms. Crystal structure analysis, cyclic voltammetry measurements of the half-cell configurations, and density functional theory calculations have been performed to explain the lithium storage mechanism, diffusion kinetics, and structure-function relationship. This study demonstrates the advantages of MOFs with high designability in the fabrication of LIBs.  相似文献   

4.
Nickel-rich layered transition metal oxides are considered as promising cathode candidates to construct next-generation lithium-ion batteries to satisfy the demands of electrical vehicles, because of the high energy density, low cost, and environment friendliness. However, some problems related to rate capability, structure stability, and safety still hamper their commercial application. In this Review, beginning with the relationships between the physicochemical properties and electrochemical performance, the underlying mechanisms of the capacity/voltage fade and the unstable structure of Ni-rich cathodes are deeply analyzed. Furthermore, the recent research progress of Ni-rich oxide cathode materials through element doping, surface modification, and structure tuning are summarized. Finally, this review concludes by discussing new insights to expand the field of Ni-rich oxides and promote practical applications.  相似文献   

5.
In recent years, flexible and wearable electronics such as smart cards, smart fabrics, bio-sensors, soft robotics, and internet-linked electronics have impacted our lives. In order to meet the requirements of more flexible and adaptable paradigm shifts, wearable products may need to be seamlessly integrated. A great deal of effort has been made in the last two decades to develop flexible lithium-ion batteries (FLIBs). The selection of suitable flexible materials is important for the development of flexible electrolytes self-supported and supported electrodes. This review is focused on the critical discussion of the factors that evaluate the flexibility of the materials and their potential path toward achieving the FLIBs. Following this analysis, we present how to evaluate the flexibility of the battery materials and FLIBs. We describe the chemistry of carbon-based materials, covalent-organic frameworks (COFs), metal-organic frameworks (MOFs), and MXene-based materials and their flexible cell design that represented excellent electrochemical performances during bending. Furthermore, the application of state-of-the-art solid polymer and solid electrolytes to accelerate the development of FLIBs is introduced. Analyzing the contributions and developments of different countries has also been highlighted in the past decade. In addition, the prospects and potential of flexible materials and their engineering are also discussed, providing the roadmap for further developments in this fast-evolving field of FLIB research.  相似文献   

6.
The practical applications of two-dimensional (2D) transition-metal borides (MBenes) have been severely hindered by the lack of accessible MBenes because of the difficulties in the selective etching of traditional ternary MAB phases with orthorhombic symmetry (ort-MAB). Here, we discover a family of ternary hexagonal MAB (h-MAB) phases and 2D hexagonal MBenes (h-MBenes) by ab initio predictions and experiments. Calculations suggest that the ternary h-MAB phases are more suitable precursors for MBenes than the ort-MAB phases. Based on the prediction, we report the experimental synthesis of h-MBene HfBO by selective removal of In from h-MAB Hf2InB2. The synthesized 2D HfBO delivered a specific capacity of 420 mAh g−1 as an anode material in lithium-ion batteries, demonstrating the potential for energy-storage applications. The discovery of this h-MBene HfBO added a new member to the growing family of 2D materials and provided opportunities for a wide range of novel applications.  相似文献   

7.
Lithium-sulphur (Li−S) batteries are a promising alternative power source, as they can provide a higher energy density than current lithium-ion batteries. Porous materials are often used as cathode materials as they can act as a host for sulphur in such batteries. Recently, covalent organic frameworks (COFs) have also been used, however they typically suffer from stability issues, resulting in limited and thus insufficient durability under practical conditions and applications. Herein, we report the synthesis of a crystalline and porous imine-linked triazine-based dimethoxybenzo-dithiophene functionalized COF (TTT-DMTD) incorporating high-density redox sites. The imine linkages were further post-synthetically transformed to yield a robust thiazole-linked COF (THZ-DMTD) by utilizing a sulphur-assisted chemical conversion method, while maintaining the crystallinity. As a synergistic effect of its high crystallinity, porosity and the presence of redox-active moieties, the thiazole-linked THZ-DMTD exhibited a high capacity and long-term stability (642 mAh g−1 at 1.0 C; 78.9 % capacity retention after 200 cycles) when applied as a cathode material in a Li−S battery.  相似文献   

8.
Electrolyte design has become ever more important to enhance the performance of lithium-ion batteries (LIBs). However, the flammability issue and high reactivity of the conventional electrolytes remain a major problem, especially when the LIBs are operated at high voltage and extreme temperatures. Herein, we design a novel non-flammable fluorinated ester electrolyte that enables high cycling stability in wide-temperature variations (e.g., −50 °C–60 °C) and superior power capability (fast charge rates up to 5.0 C) for the graphite||LiNi0.8Co0.1Mn0.1O2 (NCM811) battery at high voltage (i.e., >4.3 V vs. Li/Li+). Moreover, this work sheds new light on the dynamic evolution and interaction among the Li+, solvent, and anion at the molecular level. By elucidating the fundamental relationship between the Li+ solvation structure and electrochemical performance, we can facilitate the development of high-safety and high-energy-density batteries operating in harsh conditions.  相似文献   

9.
While it is widely recognized that the operating temperature significantly affects the energy density and cycle life of lithium-ion batteries, the consequence of electrode-electrolyte interphase chemistry to sudden environmental temperature changes remains inadequately understood. Here, we systematically investigate the effects of a temperature pulse (T pulse) on the electrochemical performance of LiNi0.8Mn0.1Co0.1O2 (NMC811) pouch full cells. By utilizing advanced characterization tools, such as time-of-flight secondary-ion mass spectrometry, we reveal that the T pulse can lead to an irreversible degradation of cathode-electrolyte interphase chemistry and architecture. Despite negligible immediate impacts on the solid-electrolyte interphase (SEI) on graphite anode, aggregated cathode-to-anode chemical crossover gradually degrades the SEI by catalyzing electrolyte reduction decomposition and inducing metallic dead Li formation because of insufficient cathode passivation after the T pulse. Consequently, pouch cells subjected to the T pulse show an inferior cycle stability to those free of the T pulse. This work unveils the effects of sudden temperature changes on the interphase chemistry and cell performance, emphasizing the importance of a proper temperature management in assessing performance.  相似文献   

10.
The development of water-soluble redox-active molecules with high potentials is one of the effective ways to enhance the energy density of aqueous organic flow batteries (AOFBs). Herein, a series of promising N-substituted benzidine analogues as water-soluble catholyte candidates with controllable redox potentials (0.78–1.01 V vs. standard hydrogen electrode (SHE)) were obtained by the molecular engineering of aqueous irreversible benzidines. Theoretical calculations reveal that the redox potentials of these benzidine derivatives in acidic solution are determined by their electronic structure and alkalinity. Among these benzidine derivatives, N,N,N′,N′-tetraethylbenzidine(TEB) shows both high redox potential (0.82 V vs. SHE) and good solubility (1.1 M). Pairing with H4[Si(W3O10)4] anolyte, the cell displayed discharge capacity retention of 99.4 % per cycle and a high coulombic efficiency (CE) of ∼100 % over 1200 cycles. The stable discharge capacity of 41.8 Ah L−1 was achieved at the 1.0 M TEB catholyte with a CE of 97.2 % and energy efficiency (EE) of 91.2 %, demonstrating that N-substituted benzidines could be promising for AOFBs.  相似文献   

11.
有机硫化物电极材料是一类新型高比容量的储能材料,通过S-S键的可逆断裂与键合进行释能与储能,主要应用于锂离子电池的正极。该材料包括有机二硫化物、有机多硫化物和硫化聚合物等。本文综述了有机硫化物电极材料的研究现状,分析了各种材料的优势与不足,并展望了其发展趋势。如何提高现有材料的比容量并改善其循环性能是目前的研究重点。  相似文献   

12.
Pyrometallurgy technique is usually applied as a pretreatment to enhance the leaching efficiencies in the hydrometallurgy process for recovering valuable metals from spent lithium-ion batteries. However, traditional pyrometallurgy processes are energy and time consuming. Here, we report a carbothermal shock (CTS) method for reducing LiNi0.3Co0.2Mn0.5O2 (NCM325) cathode materials with uniform temperature distribution, high heating and cooling rates, high temperatures, and ultrafast reaction times. Li can be selectively leached through water leaching after CTS process with an efficiency of >90 %. Ni, Co, and Mn are recovered by dilute acid leaching with efficiencies >98 %. The CTS reduction strategy is feasible for various spent cathode materials, including NCM111, NCM523, NCM622, NCM811, LiCoO2, and LiMn2O4. The CTS process, with its low energy consumption and potential scale application, provides an efficient and environmentally friendly way for recovering spent lithium-ion batteries.  相似文献   

13.
To solve the problems such as the dissolution and the poor conductivity of organic small molecule electrode materials, we construct π-d conjugated coordination polymer Ni-DHBQ with multiple redox-active centers as lithium storage materials. It exhibits an ultra-high capacity of 9-electron transfers, while the π-d conjugation and the laminar structure inside the crystal ensure fast electron transport and lithium ion diffusion, resulting in excellent rate performance (505.6 mAh g−1 at 1 A g−1 after 300 cycles). The interaction of Ni-DHBQ with the binder CMC synergistically inhibits its dissolution and anchors the Ni atoms, thus exhibiting excellent cycling stability (650.7 mAh g−1 at 0.1 A g−1 after 100 cycles). This work provides insight into the mechanism of lithium storage in π-d conjugated coordination polymers and the synergistic effect of CMC, which will contribute to the molecular design and commercial application of organic electrode materials.  相似文献   

14.
Organic electrode materials could revolutionize batteries because of their high energy densities, the use of Earth-abundant elements, and structural diversity which allows fine-tuning of electrochemical properties. However, small organic molecules and intermediates formed during their redox cycling in lithium-ion batteries (LIBs) have high solubility in organic electrolytes, leading to rapid decay of cycling performance. We report the use of three cyclotetrabenzil octaketone macrocycles as cathode materials for LIBs. The rigid and insoluble naphthalene-based cyclotetrabenzil reversibly accepts eight electrons in a two-step process with a specific capacity of 279 mAh g−1 and a stable cycling performance with ≈65 % capacity retention after 135 cycles. DFT calculations indicate that its reduction increases both ring strain and ring rigidity, as demonstrated by computed high distortion energies, repulsive regions in NCI plots, and close [C⋅⋅⋅C] contacts between the naphthalenes. This work highlights the importance of shape-persistency and ring strain in the design of redox-active macrocycles that maintain very low solubility in various redox states.  相似文献   

15.
Organic materials are promising candidates for future rechargeable batteries, owing to their high natural abundance and rapidly redox reaction. Elaborating the charge/discharge process of organic electrode is critical to unveil the fundamental redox mechanism of lithium-ion batteries (LIBs), but monitoring of this process is still challenging. Here, we report a nondestructive electron paramagnetic resonance (EPR) technique to real-time detect the electron migration step within polyimide cathode. From in situ EPR tests, we vividly observe a classical redox reaction along with two-electron transfer which only shows one pair of peaks in the cyclic voltammetry curve. The radical anion and dianion intermediates are detailed delineation at redox sites in EPR spectra, which can be further confirmed through density functional theory calculations. This approach is especially crucial to elaborate the correlation behind electrochemical and molecular structure for multistep organic-based LIBs.  相似文献   

16.
Lithium difluoro(oxalato) borate (LiDFOB) has been widely investigated in lithium-ion batteries (LIBs) owing to its advantageous thermal stability and excellent aluminum passivation property. However, LiDFOB tends to suffer from severe decomposition and generate a lot of gas species (e.g., CO2). Herein, a novel cyano-functionalized lithium borate salt, namely lithium difluoro(1,2-dihydroxyethane-1,1,2,2-tetracarbonitrile) borate (LiDFTCB), is innovatively synthesized as a highly oxidative-resistant salt to alleviate above dilemma. It is revealed that the LiDFTCB-based electrolyte enables LiCoO2/graphite cells with superior capacity retention at both room and elevated temperatures (e.g., 80 % after 600 cycles) with barely any CO2 gas evolution. Systematic studies reveal that LiDFTCB tends to form thin and robust interfacial layers at both electrodes. This work emphasizes the crucial role of cyano-functionalized anions in improving cycle lifespan and safety of practical LIBs.  相似文献   

17.
Non-aqueous Li-air batteries, despite their high energy density and low cost, have not been deployed practically due to their instability in ambient air, where moisture causes parasitic reactions and shortens their life drastically. Here, we demonstrate the rational design of nanoporous covalent organic frameworks (COFs) as effective gas diffusion layers (GDLs) to address this constraint. The COF GDLs, with a tailor-made pore size of ≈1.4 nm and superhydrophobicity, can limit the intrusion of organic electrolytes and moisture into the gas diffusion channels, enabling high capacity, fast kinetics, and excellent stability of the Li-air batteries. Moreover, we achieve multi-atmosphere Li-air batteries, which can stably cycle under open ambient air (relative humidity up to 95 %) and even in various atmospheres with looping oxygen, humid air, and carbon dioxide. The design principles of our COF GDLs can be universally applied in energy storage and electrochemical systems using organic electrolytes.  相似文献   

18.
锂钛复合氧化物锂离子电池负极材料的研究   总被引:17,自引:0,他引:17  
杨晓燕  华寿南  张树永 《电化学》2000,6(3):350-356
采用 3种化学方法合成锂钛复合氧化物 .应用X -射线衍射分析对其结构进行表征以及电化学性能测试 ,结果表明 :由Li2 CO3、TiO2 高温合成的锂钛复合氧化物为尖晶石结构的Li4Ti5 O12 .Li4Ti5 O12 电极在 1 .5V左右有一放电平台 ,充放电可逆性良好 ,即充电电压平台与此接近 ,且电极的比容量较大 ,循环性能良好 .以 0 .30mA·cm- 2 充放电时 ,首次放电容量可达 30 0mAh·g- 1,可逆比容量为 1 0 0mAh·g- 1,经多次充放电循环后 ,其结构仍保持稳定性 .试验电池测试表明 ,Li4Ti5 O12 可选作Li4Ti5 O12 /LiCoO2 锂离子电池的负极材料 .  相似文献   

19.
The poor conductivity of the pristine bulk covalent organic material is the main challenge for its application in energy storage. The mechanism of symmetric alkynyl bonds (C≡C) in covalent organic materials for lithium storage is still rarely reported. Herein, a nanosized (≈80 nm) alkynyl-linked covalent phenanthroline framework (Alkynyl-CPF) is synthesized for the first time to improve the intrinsic charge conductivity and the insolubility of the covalent organic material in lithium-ion batteries. Because of the high degree of electron conjugation along alkynyl units and N atoms from phenanthroline groups, the Alkynyl-CPF electrodes with the lowest HOMO–LUMO energy gap (ΔE=2.629 eV) show improved intrinsic conductivity by density functional theory (DFT) calculations. As a result, the pristine Alkynyl-CPF electrode delivers superior cycling performance with a large reversible capacity and outstanding rate properties (1068.0 mAh g−1 after 300 cycles at 100 mA g−1 and 410.5 mAh g−1 after 700 cycles at 1000 mA g−1). Moreover, by Raman, FT-IR, XPS, EIS, and theoretical simulations, the energy-storage mechanism of C≡C units and phenanthroline groups in the Alkynyl-CPF electrode has been investigated. This work provides new strategies and insights for the design and mechanism investigation of covalent organic materials in electrochemical energy storage.  相似文献   

20.
Fiber lithium-ion batteries represent a promising power strategy for the rising wearable electronics. However, most fiber current collectors are solid with vastly increased weights of inactive materials and sluggish charge transport, thus resulting in low energy densities which have hindered the development of fiber lithium-ion batteries in the past decade. Here, a braided fiber current collector with multiple channels was prepared by multi-axial winding method to not only increase the mass fraction of active materials, but also to promote ion transport along fiber electrodes. In comparison to typical solid copper wires, the braided fiber current collector hosted 139 % graphite with only 1/3 mass. The fiber graphite anode with braided current collector delivered high specific capacity of 170 mAh g−1 based on the overall electrode weight, which was 2 times higher than that of its counterpart solid copper wire. The resulting fiber battery showed high energy density of 62 Wh kg−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号