首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Ni-based catalysts have been widely studied in the hydrogenation of CO2 to CH4, but selective and efficient synthesis of higher alcohols (C2+OH) from CO2 hydrogenation over Ni-based catalyst is still challenging due to successive hydrogenation of C1 intermediates leading to methanation. Herein, we report an unprecedented synthesis of C2+OH from CO2 hydrogenation over K-modified Ni−Zn bimetal catalyst with promising activity and selectivity. Systematic experiments (including XRD, in situ spectroscopic characterization) and computational studies reveal the in situ generation of an active K-modified Ni−Zn carbide (K-Ni3Zn1C0.7) by carburization of Zn-incorporated Ni0, which can significantly enhance CO2 adsorption and the surface coverage of alkyl intermediates, and boost the C−C coupling to C2+OH rather than conventional CH4. This work opens a new catalytic avenue toward CO2 hydrogenation to C2+OH, and also provides an insightful example for the rational design of selective and efficient Ni-based catalysts for CO2 hydrogenation to multiple carbon products.  相似文献   

2.
Solar-driven CO2 hydrogenation into multi-carbon products is a highly desirable, but challenging reaction. The bottleneck of this reaction lies in the C−C coupling of C1 intermediates. Herein, we construct the C−C coupling centre for C1 intermediates via the in situ formation of Co0−Coδ+ interface double sites on MgAl2O4 (Co−CoOx/MAO). Our experimental and theoretical prediction results confirmed the effective adsorption and activation of CO2 by the Co0 site to produce C1 intermediates, while the introduction of the electron-deficient state of Coδ+ can effectively reduce the energy barrier of the key CHCH* intermediates. Consequently, Co−CoOx/MAO exhibited a high C2–4 hydrocarbons production rate of 1303 μmol g−1 h−1; the total organic carbon selectivity of C2–4 hydrocarbons is 62.5 % under light irradiation with a high ratio (≈11) of olefin to paraffin. This study provides a new approach toward the design of photocatalysts used for CO2 conversion into C2+ products.  相似文献   

3.
Electrocatalytic CO2 reduction via renewable electricity provides a sustainable way to produce valued chemicals, while it suffers from low activity and selectivity. Herein, we constructed a novel catalyst with unique Ti3C2Tx MXene-regulated Ag−ZnO interfaces, undercoordinated surface sites, as well as mesoporous nanostructures. The designed Ag−ZnO/Ti3C2Tx catalyst achieves an outstanding CO2 conversion performance of a nearly 100% CO Faraday efficiency with high partial current density of 22.59 mA cm−2 at −0.87 V versus reversible hydrogen electrode. The electronic donation of Ag and up-shifted d-band center relative to Fermi level within MXene-regulated Ag−ZnO interfaces contributes the high selectivity of CO. The CO2 conversion is highly correlated with the dominated linear-bonded CO intermediate confirmed by in situ infrared spectroscopy. This work enlightens the rational design of unique metal-oxide interfaces with the regulation of MXene for high-performance electrocatalysis beyond CO2 reduction.  相似文献   

4.
Rigid molecular sieving materials are the ideal candidates for gas separation (e. g., C2H2/C2H4) due to their ultrahigh adsorption selectivity and the absence of gas co-adsorption. However, the absolute molecular sieving effect for C2H2/C2H4 separation has rarely been realized because of their similar physicochemical properties. Herein, we demonstrate the absolute molecular sieving of C2H2 from C2H4 by a rigid ultra-microporous metal-organic framework ( F−PYMO−Cu ) with 1D regular channels (pore size of ca. 3.4 Å). F−PYMO−Cu exhibited moderate acetylene uptake (35.5 cm3/cm3), but very low ethylene uptake (0.55 cm3/cm3) at 298 K and 1 bar, yielding the second highest C2H2/C2H4 uptake ratio of 63.6 up to now. One-step C2H4 production from a binary mixture of C2H2/C2H4 and a ternary mixture of C2H2/CO2/C2H4 at 298 K was achieved and verified by dynamic breakthrough experiments. Coupled with excellent thermal and water stability, F−PYMO−Cu could be a promising candidate for industrial C2 separation tasks.  相似文献   

5.
Separation of acetylene (C2H2) from carbon dioxide (CO2) or ethylene (C2H4) is industrially important but still challenging so far. Herein, we developed two novel robust metal organic frameworks AlFSIX-Cu-TPBDA (ZNU-8) with znv topology and SIFSIX-Cu-TPBDA (ZNU-9) with wly topology for efficient capture of C2H2 from CO2 and C2H4. Both ZNU-8 and ZNU-9 feature multiple anion functionalities and hierarchical porosity. Notably, ZNU-9 with more anionic binding sites and three distinct cages displays both an extremely large C2H2 capacity (7.94 mmol/g) and a high C2H2/CO2 (10.3) or C2H2/C2H4 (11.6) selectivity. The calculated capacity of C2H2 per anion (4.94 mol/mol at 1 bar) is the highest among all the anion pillared metal organic frameworks. Theoretical calculation indicated that the strong cooperative hydrogen bonds exist between acetylene and the pillared SiF62− anions in the confined cavity, which is further confirmed by in situ IR spectra. The practical separation performance was explicitly demonstrated by dynamic breakthrough experiments with equimolar C2H2/CO2 mixtures and 1/99 C2H2/C2H4 mixtures under various conditions with excellent recyclability and benchmark productivity of pure C2H2 (5.13 mmol/g) or C2H4 (48.57 mmol/g).  相似文献   

6.
We present surface reconstruction-induced C−C coupling whereby CO2 is converted into ethylene. The wurtzite phase of CuGaS2. undergoes in situ surface reconstruction, leading to the formation of a thin CuO layer over the pristine catalyst, which facilitates selective conversion of CO2 to ethylene (C2H4). Upon illumination, the catalyst efficiently converts CO2 to C2H4 with 75.1 % selectivity (92.7 % selectivity in terms of Relectron) and a 20.6 μmol g−1 h−1 evolution rate. Subsequent spectroscopic and microscopic studies supported by theoretical analysis revealed operando-generated Cu2+, with the assistance of existing Cu+, functioning as an anchor for the generated *CO and thereby facilitating C−C coupling. This study demonstrates strain-induced in situ surface reconstruction leading to heterojunction formation, which finetunes the oxidation state of Cu and modulates the CO2 reduction reaction pathway to selective formation of ethylene.  相似文献   

7.
The mechanisms of CO2 coupling with the propargylic alcohol using alkali carbonates M2CO3 (M = Li, Na, K, Cs) have been investigated by means of density functional theory calculations. The calculations reveal that the target product tetronic acid (TA) is yielded through two stages: (a) the formation of the α-alkylidene cyclic carbonate (αACC) intermediate via Cs2CO3-mediated carboxylative cyclization of the propargylic alcohol with CO2, and (b) the conversion of the αACC intermediate with Cs2CO3 to produce the cesium salt of the TA. Since the overall kinetic barriers for the two stages are comparable and affordable, the excellent chemoselectivity to the TA should be primarily originated from the high thermodynamic stability of the cesium salt of the TA. Moreover, relative to the TA, the possibility to yield the by-product acyclic carbonate can be excluded due to the both kinetics and thermodynamic inferiority. This result is different from the organic base-mediated reaction. Alternatively, our calculations predict that CsHCO3 together generated with the cesium salt of the TA might also be an available mediating reagent for the incorporation of CO2 with the propargylic alcohol. Compared to other alkali carbonates M2CO3 (M = Li, Na, K), the stronger basicity of Cs2CO3 and the lower ionic potential of cesium ion can raise the effective concentration of the αACC intermediate, and thus the conversion of the αACC intermediate into the cesium salt of the TA can be achieved with high yield.  相似文献   

8.
The site isolation strategy has been employed in thermal catalytic acetylene semihydrogenation to inhibit overhydrogenation and C−C coupling. However, there is a dearth of analogous investigations in electrocatalytic systems. In this work, density functional theory (DFT) simulations demonstrate that isolated Cu metal sites have higher energy barriers on overhydrogenation and C−C coupling. Following this result, we develop Cu single-atom catalysts highly dispersed on nitrogen-doped carbon matrix, which exhibit high ethylene selectivity (>80 % Faradaic efficiency for ethylene, <1 % Faradaic efficiency for C4, and no ethane) at high concentrations of acetylene. The superior performance observed in the electrocatalytic selective hydrogenation of acetylene can be attributed to the weak adsorption of ethylene intermediates and highly energy barriers on C−C coupling at isolated sites, as confirmed by both DFT calculations and experimental results. This study provides a comprehensive understanding of the isolated sites inhibiting the side reactions of electrocatalytic acetylene semihydrogenation.  相似文献   

9.
Constructing Cu single-atoms (SAs) catalysts is considered as one of the most effective strategies to enhance the performance of electrochemical reduction of CO2 (e-CO2RR) towards CH4, however there are challenges with activity, selectivity, and a cumbersome fabrication process. Herein, by virtue of the meta-position structure of alkynyl in 1,3,5-triethynylbenzene and the interaction between Cu and −C≡C−, a Cu SAs electrocatalyst (Cu−SAs/HGDY), containing low-coordination Cu−C2 active sites, was synthesized through a simple and efficient one-step method. Notably, this represents the first achievement of preparing Cu SAs catalysts with Cu−C2 coordination structure, which exhibited high CO2-to-CH4 selectivity (72.1 %) with a high CH4 partial current density of 230.7 mA cm−2, and a turnover frequency as high as 2756 h−1, dramatically outperforming currently reported catalysts. Comprehensive experiments and calculations verified the low-coordination Cu−C2 structure not only endowed the Cu SAs center more positive electricity but also promoted the formation of H•, which contributed to the outstanding e-CO2RR to CH4 electrocatalytic performance of Cu−SAs/HGDY. Our work provides a novel H⋅-transferring mechanism for e-CO2RR to CH4 and offers a protocol for the preparation of two-coordinated Cu SAs catalysts.  相似文献   

10.
Photoconversion of CO2 and H2O into ethanol is an ideal strategy to achieve carbon neutrality. However, the production of ethanol with high activity and selectivity is challenging owing to the less efficient reduction half-reaction involving multi-step proton-coupled electron transfer (PCET), a slow C−C coupling process, and sluggish water oxidation half-reaction. Herein, a two-dimensional/two-dimensional (2D/2D) S-scheme heterojunction consisting of black phosphorus and Bi2WO6 (BP/BWO) was constructed for photocatalytic CO2 reduction coupling with benzylamine (BA) oxidation. The as-prepared BP/BWO catalyst exhibits a superior photocatalytic performance toward CO2 reduction, with a yield of 61.3 μmol g−1 h−1 for ethanol (selectivity of 91 %).In situ spectroscopic studies and theoretical calculations reveal that S-scheme heterojunction can effectively promote photogenerated carrier separation via the Bi−O−P bridge to accelerate the PCET process. Meanwhile, electron-rich BP acts as the active site and plays a vital role in the process of C−C coupling. In addition, the substitution of BA oxidation for H2O oxidation can further enhance the photocatalytic performance of CO2 reduction to C2H5OH. This work opens a new horizon for exploring novel heterogeneous photocatalysts in CO2 photoconversion to C2H5OH based on cooperative photoredox systems.  相似文献   

11.
Cu catalysts are most apt for reducing CO(2) to multi-carbon products in aqueous electrolytes. To enhance the product yield, we can increase the overpotential and the catalyst mass loading. However, these approaches can cause inadequate mass transport of CO(2) to the catalytic sites, which will then lead to H2 evolution dominating the product selectivity. Herein, we use a MgAl LDH nanosheet ‘house-of-cards’ scaffold to disperse CuO-derived Cu (OD-Cu). With this support-catalyst design, at −0.7 VRHE, CO could be reduced to C2+ products with a current density (jC2+) of −1251 mA cm−2. This is 14× that of the jC2+ shown by unsupported OD-Cu. The current densities of C2+ alcohols and C2H4 were also high at −369 and −816 mA cm−2 respectively. We propose that the porosity of the LDH nanosheet scaffold enhances CO diffusion through the Cu sites. The CO reduction rate can thus be increased, while minimizing H2 evolution, even when high catalyst loadings and large overpotentials are used.  相似文献   

12.
Selective CO2 photoreduction into C2 fuels under mild conditions suffers from low product yield and poor selectivity owing to the kinetic challenge of C−C coupling. Here, triatomic sites are introduced into bimetallic sulfide to promote C−C coupling for selectively forming C2 products. As an example, FeCoS2 atomic layers with different oxidation degrees are first synthesized, demonstrated by X-ray photoelectron spectroscopy and X-ray absorption near edge spectroscopy spectra. Both experiment and theoretical calculation verify more charges aggregate around the introduced oxygen atom, which enables the original Co−Fe dual sites to turn into Co−O−Fe triatomic sites, thus promoting C−C coupling of double *COOH intermediates. Accordingly, the mildly oxidized FeCoS2 atomic layers exhibit C2H4 formation rate of 20.1 μmol g−1 h−1, with the product selectivity and electron selectivity of 82.9 % and 96.7 %, outperforming most previously reported photocatalysts under similar conditions.  相似文献   

13.
We report the unprecedented electrocatalytic activity of a series of molecular nickel thiolate complexes ( 1 – 5 ) in reducing CO2 to C1–3 hydrocarbons on carbon paper in pH-neutral aqueous solutions. Ni(mpo)2 ( 3 , mpo=2-mercaptopyridyl-N-oxide), Ni(pyS)3 ( 4 , pyS=2-mercaptopyridine), and Ni(mp)2 ( 5 , mp=2-mercaptophenolate) were found to generate C3 products from CO2 for the first time in molecular complex. Compound 5 exhibits Faradaic efficiencies (FEs) of 10.6 %, 7.2 %, 8.2 % for C1, C2, C3 hydrocarbons respectively at −1.0 V versus the reversible hydrogen electrode. Addition of CO to the system significantly promotes the FEC1–C3 to 41.1 %, suggesting that a key Ni−CO intermediate is associated with catalysis. A variety of spectroscopies have been performed to show that the structures of nickel complexes remain intact during CO2 reduction.  相似文献   

14.
Bioinspired complexes employing the ligands 6-tert-butylpyridazine-3-thione (SPn) and pyridine-2-thione (SPy) were synthesized and fully characterized to mimic the tungstoenzyme acetylene hydratase (AH). The complexes [W(CO)(C2H2)(CHCH-SPy)(SPy)] ( 4 ) and [W(CO)(C2H2)(CHCH-SPn)(SPn)] ( 5 ) were formed by intramolecular nucleophilic attack of the nitrogen donors of the ligand on the coordinated C2H2 molecule. Labelling experiments using C2D2 with the SPy system revealed the insertion reaction proceeding via a bis-acetylene intermediate. The starting complex [W(CO)(C2H2)(SPy)2] ( 6 ) for these studies was accessed by the new acetylene precursor mixture [W(CO)(C2H2)n(MeCN)3−nBr2] (n=1 and 2; 7 ). All complexes represent rare examples in the field of W−C2H2 chemistry with 4 and 5 being the first of their kind. In the ongoing debate on the enzymatic mechanism, the findings support activation of acetylene by the tungsten center.  相似文献   

15.
In the comproportionation reaction of CuIIX2 and Cu0 with isopropylacetylene (iPr−C≡C−H), the ethynediide species C22− is generated via concomitant C−H/C−C bond cleavage of the iPr−C≡C−H precursor under moderate temperature to direct the formation of CuI mixed ethynediide/isopropylethynide nanoclusters (potentially explosive). The active ethynediide dianion C22− exhibits chameleon‐like templating behavior to form C2@Cum (m =6 ( 3 , 4 ), 7 ( 2 , 4 ), 8 ( 1 )) central structural units for successive formation of {C22−⊂Cu24} ( 1 , 2 ), {6 C22−⊂Cu48} ( 3 ), and {18 C22−⊂Cu92} ( 4 ) complexes. Bearing the highest C22− content, complex 4 features an unprecedented nanoscale Cu2C2 kernel. Furthermore, 1 – 3 exhibit structure‐controlled photoluminescence in the solid state.  相似文献   

16.
Crystals of bis(2‐ethyl‐3‐hydroxy‐6‐methylpyridinium) succinate–succinic acid (1/1), C8H12NO+·0.5C4H4O42−·0.5C4H6O4, (I), and 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium hydrogen succinate, C8H12NO+·C4H5O4, (II), were obtained by reaction of 2‐ethyl‐6‐methylpyridin‐3‐ol with succinic acid. The succinate anion and succinic acid molecule in (I) are located about centres of inversion. Intermolecular O—H...O, N—H...O and C—H...O hydrogen bonds are responsible for the formation of a three‐dimensional network in the crystal structure of (I) and a two‐dimensional network in the crystal structure of (II). Both structures are additionally stabilized by π–π interactions between symmetry‐related pyridine rings, forming a rod‐like cationic arrangement for (I) and cationic dimers for (II).  相似文献   

17.
Single atom alloy (SAA) catalysts have been recently explored for promotion of various heterogeneous catalysis, but it remains unexplored for selective electrocatalytic reduction of carbon dioxide (CO2) into multi-carbon (C2+) products involving C−C coupling. Herein we report a single-atomic Bi decorated Cu alloy (denoted as BiCu-SAA) electrocatalyst that could effectively modulate selectivity of CO2 reduction into C2+ products instead of previous C1 ones. The BiCu-SAA catalyst exhibits remarkably superior selectivity of C2+ products with optimal Faradaic efficiency (FE) of 73.4 % compared to the pure copper nanoparticle or Bi nanoparticles-decorated Cu nanocomposites, and its structure and performance can be well maintained at current density of 400 mA cm−2 under the flow cell system. Based on our in situ characterizations and density functional theory calculations, the BiCu-SAA is found to favor the activation of CO2 and subsequent C−C coupling during the electrocatalytic reaction, as should be responsible for its extraordinary C2+ selectivity.  相似文献   

18.
Transition-metal catalyzed coupling to form C−N bonds is significant in chemical science. However, the inert nature of N2 and CO2 renders their coupling quite challenging. Herein, we report the activation of dinitrogen in the mild plasma atmosphere by the gas-phase monometallic YB1–4 anions and further coupling of CO2 to form C−N bonds by using mass spectrometry and theoretical calculation. The observed product anions are NCNBO and N(BO)2, accompanied by the formation of neutral products YO and YB0–2NC, respectively. We can tune the reactivity and the type of products by manipulating the number of B atoms. The B atoms in YB1–4N2 act as electron donors in CO2 reduction reactions, and the carbon atom originating from CO2 serves as an electron reservoir. This is the first example of gas-phase monometallic anions, which are capable to realize the functionalization of N2 with CO2 through C−N bond formation and N−N and C−O bond cleavage.  相似文献   

19.
Quantum chemistry calculations predict that besides the reported single metal anion Pt, Ni can also mediate the co-conversion of CO2 and CH4 to form [CH3−M(CO2)−H] complex, followed by transformation to C−C coupling product [H3CCOO−M−H] ( A ), hydrogenation products [H3C−M−OCOH] ( B ) and [H3C−M−COOH]. For Pd, a fourth product channel leading to PdCO2…CH4 becomes more competitive. For Ni, the feed order must be CO2 first, as the weaker donor-acceptor interaction between Ni and CH4 increases the C−H activation barrier, which is reduced by [Ni−CO2]. For Ni/Pt, the highly exothermic products A and B are similarly stable with submerged barrier that favors B . The smaller barrier difference between A and B for Ni suggests the C−C coupling product is more competitive in the presence of Ni than Pt. The charge redistribution from M is the driving force for product B channel. This study adds our understanding of single atomic anions to activate CH4 and CO2 simultaneously.  相似文献   

20.
The electrocatalytic carbon dioxide (CO2) reduction is a promising approach for converting this greenhouse gas into value-added chemicals, while the capability of producing products with longer carbon chains (Cn>3) is limited. Herein, we demonstrate the Br-assisted electrocatalytic oxidation of ethylene (C2H4), a major CO2 electroreduction product, into 2-bromoethanol by electro-generated bromine on metal phthalocyanine catalysts. Due to the preferential formation of Br2 over *O or Cl2 to activate the C=C bond, a high partial current density of producing 2-bromoethanol (46.6 mA⋅cm−2) was obtained with 87.2 % Faradaic efficiency. Further coupling with the electrocatalytic nitrite reduction to ammonia at the cathode allowed the production of triethanolamine with six carbon atoms. Moreover, by coupling a CO2 electrolysis cell for in situ C2H4 generation and a C2H4 oxidation/nitrite reduction cell, the capability of upgrading of CO2 and nitrite into triethanolamine was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号