共查询到16条相似文献,搜索用时 0 毫秒
1.
Qingyang Wang Dr. Yincai Xu Tingting Huang Yupei Qu Jianan Xue Dr. Baoyan Liang Prof. Yue Wang 《Angewandte Chemie (International ed. in English)》2023,62(19):e202301930
Advanced multiple resonance induced thermally activated delayed fluorescence (MR-TADF) emitters have emerged as a privileged motif for applications in organic light-emitting diodes (OLEDs), because they furnish highly tunable TADF characteristics and high color purity emission. Herein, based on the unique nitrogen-atom embedding molecular engineering (NEME) strategy, a series of compounds BN-TP-Nx (x=1, 2, 3, 4) have been customized. The nitrogen-atom anchored at different position of triphenylene hexagonal lattice entails varying degrees of perturbation to the electronic structure. The newly-constructed emitters have demonstrated the precise regulation of emission maxima of MR-TADF emitters to meet the actual industrial demand, and further enormously enriched the MR-TADF molecular reservoir. The BN-TP-N3-based OLED exhibits ultrapure green emission, with peak of 524 nm, full-width at half-maximum (FWHM) of 33 nm, Commission Internationale de L'Eclairage (CIE) coordinates of (0.23, 0.71), and maximum external quantum efficiency (EQE) of 37.3 %. 相似文献
2.
Dr. Tao Hua Dr. Nengquan Li Dr. Zhongyan Huang Dr. Youming Zhang Lian Wang Dr. Zhanxiang Chen Dr. Jingsheng Miao Dr. Xiaosong Cao Prof. Xinzhong Wang Prof. Chuluo Yang 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2024,136(7):e202318433
Multiple-resonance thermally activated delayed fluorescence (MR-TADF) materials are highly coveted for their high efficiency and narrowband emission in organic light-emitting diodes (OLEDs). Nevertheless, the development of near-infrared (NIR) MR-TADF emitters remains a formidable challenge. In this study, we design two new NIR MR-TADF emitters, PXZ−R−BN and BCz−R−BN, by embedding 10H-phenoxazine (PXZ) and 7H-dibenzo[c,g]carbazole (BCz) fragments to increase the electron-donating ability or extending π-conjugation on the framework of para-boron fusing polycyclic aromatic hydrocarbons (PAHs). Both compounds emit in the NIR region, with a full-width at half-maximum (FWHM) of 49 nm (0.13 eV) for PXZ−R−BN and 43 nm (0.11 eV) for BCz−R−BN in toluene. To sensitize the two NIR MR-TADF emitters in OLEDs, a new platinum complex, Pt-1, is designed as a sensitizer. The PXZ−R−BN-based sensitized OLEDs achieve a maximum external quantum efficiency (EQEmax) of nearly 30 % with an emission band at 693 nm, and exceptional long operational stability with an LT97 (time to 97 % of the initial luminance) value of 39084 h at an initial radiance of 1000 mW sr−1 m−2. The BCz−R−BN-based OLEDs reach EQEmax values of 24.2 % with an emission band at 713 nm, which sets a record value for NIR OLEDs with emission bands beyond 700 nm. 相似文献
3.
Dr. Tao Wang Dr. Xiaojun Yin Dr. Xiaosong Cao Prof. Chuluo Yang 《Angewandte Chemie (International ed. in English)》2023,62(24):e202301988
Most multi-resonance (MR) induced thermally activated delayed fluorescence (TADF) emitters generally exhibit strong aggregation and relatively worse solubility due to their rigid and planar molecule structures, which is highly undesirable for solution-processible devices. Herein, a simple but feasible approach for solution-processible small-molecule MR-TADF emitters is developed by incorporating two MR-TADF units onto carbazole bridge bearing long alkyl chains. The obtained emitters demonstrate supreme film-forming capability and narrowband emissions with full-width at half-maximums (FWHMs) of 22 nm. The resulting solution-processed narrowband electroluminescent devices achieve maximum external quantum efficiency of 27.1 %, which represents the highest efficiency among the solution-processed OLEDs based on MR-TADF emitters. This simple approach reveals great potential of developing solution-processible emitters for rigid and planar molecular structures. 相似文献
4.
Dr. Yincai Xu Qingyang Wang Xinliang Cai Prof. Chenglong Li Prof. Shimei Jiang Prof. Yue Wang 《Angewandte Chemie (International ed. in English)》2023,62(52):e202312451
It is of great strategic significance to develop highly efficient narrowband organic electroluminescent materials that can be utilized to manufacture ultra-high-definition (UHD) displays and meet or approach the requirements of Broadcast Television 2020 (B.T.2020) color gamut standards. This motif poses challenges for molecular design and synthesis, especially for developing generality, diversity, scalability, and robustness of molecular structures. The emergence of multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters has ingeniously solved the problems and demonstrated bright application prospects in the field of UHD displays, sparking a research boom. This Minireview summarizes the research endeavors of narrowband organic electroluminescent materials, with emphasis on the tremendous contribution of frontier molecular orbital engineering (FMOE) strategy. It combines the outstanding advantages of MR framework and donor-acceptor (D−A) structure, and can achieve red-shift and narrowband emission simultaneously, which is of great significance in the development of long-wavelength narrowband emitters with emission maxima especially exceeding 500 nm. We hope that this Minireview would provide some inspiration for what could transpire in the future. 相似文献
5.
Kaiyuan Zhang Dr. Xingdong Wang Yufei Chang Yuliang Wu Dr. Shumeng Wang Prof. Lixiang Wang 《Angewandte Chemie (International ed. in English)》2023,62(47):e202313084
The hyperfluorescence has drawn great attention in achieving efficient narrowband emitting devices based on multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters. However, achieving efficient solution-processed pure blue hyperfluorescence devices is still a challenge, due to the unbalanced charge transport and serious exciton quenching caused by that the holes are easily trapped on the high-lying HOMO (the highest occupied molecular orbital) level of traditional diphenylamine-decorated emitters. Here, we developed two narrowband blue organoboron emitters with low-lying HOMO levels by decorating the MR-TADF core with weakly electron-donating carbazoles, which could suppress the hole trapping effect by reducing the hole traps between host and MR-TADF emitter from deep (0.40 eV) to shallow (0.14/0.20 eV) ones for facilitating hole transport and exciton formation, as well as avoiding exciton quenching. And the large dihedral angle between the carbazole and MR-TADF core makes the carbazole act as a steric hindrance to inhibit molecular aggregation. Accordingly, the optimized solution-processed pure blue hyperfluorescence devices simultaneously realize record external quantum efficiency of 29.2 %, narrowband emission with a full-width at half-maximum of 16.6 nm, and pure blue color with CIE coordinates of (0.139, 0.189), which is the best result for the solution-processed organic light-emitting diodes based on MR-TADF emitters. 相似文献
6.
Yihang Jiao Zijian Chen Dr. Weidong Qiu Hongwei Xie Jiaji Yang Dr. Xiaomei Peng Dr. Wentao Xie Qing Gu Dr. Mengke Li Dr. Kunkun Liu Prof. Shi-Jian Su 《Angewandte Chemie (International ed. in English)》2023,62(38):e202309104
Polychlorinated (hetero)arenes have shown great promise for organic optoelectronics applications. However, the harsh synthetic routes for polychlorinated compounds and the possible luminescence quenching from the compact intermolecular π–π stacking induced by chlorine atoms limit their investigations and applications in luminescent materials. Herein, two isomeric polychlorinated polycyclic aromatic hydrocarbon (PAH) compounds JY-1-Cl and JY-2-Cl consisting of rigidified aryl ketones and amine are designed and synthesized under mild conditions through nucleophilic chlorination intermediated by an electron donor-acceptor complex. Among them, as a result of the strong π–π interactions induced by chlorine atoms, JY-2-Cl exhibits bright monomer and dimer emissions with dual thermally activated delayed fluorescence (TADF) characters. Notably, compared with the non-chlorinated compounds, a high photoluminescence quantum yield is maintained after introducing multiple chlorine atoms into JY-2-Cl . The first dual-TADF organic light-emitting diodes are also successfully fabricated with maximum external quantum efficiency as high as 29.1 % by employing JY-2-Cl as emitter. This work presents a new paradigm and synthesis of polychlorinated amine-carbonyl PAHs and demonstrates the great potential of the chlorinated materials for luminescent applications. 相似文献
7.
Chen Cao Ji-Hua Tan Dr. Ze-Lin Zhu Jiu-Dong Lin Hong-Ji Tan Huan Chen Dr. Yi Yuan Dr. Man-Kit Tse Dr. Wen-Cheng Chen Prof. Chun-Sing Lee 《Angewandte Chemie (International ed. in English)》2023,62(10):e202215226
Rationally tuning the emission position and narrowing the full width at half-maximum (FWHM) of an emitter is of great importance for many applications. By synergistically improving rigidity, strengthening the resonant strength, inhibiting molecular bending and rocking, and destabilizing the HOMO energy level, a deep-blue emitter (CZ2CO) with a peak wavelength of 440 nm and an ultranarrow spectral FWHM of 16 nm (0.10 eV) was developed via intramolecular cyclization in a carbonyl/N resonant core (QAO). The dominant υ0-0 transition character of CZ2CO gives a Commission Internationale de I’Éclairage coordinates (CIE) of (0.144, 0.042), nicely complying with the BT.2020 standard. Moreover, a hyper-fluorescent device based on CZ2CO shows a high maximum external quantum efficiency (EQEmax) of 25.6 % and maintains an EQE of 22.4 % at a practical brightness of 1000 cd m−2. 相似文献
8.
Xiang-Ji Liao Dongdong Pu Li Yuan Jingjing Tong Shuai Xing Dr. Zhen-Long Tu Prof. Jing-Lin Zuo Prof. Wen-Hua Zheng Prof. You-Xuan Zheng 《Angewandte Chemie (International ed. in English)》2023,62(6):e202217045
Chiral boron/nitrogen doped multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters are promising for highly efficient and color-pure circularly polarized organic light-emitting diodes (CP-OLEDs). Herein, we report two pairs of MR-TADF materials (Czp-tBuCzB, Czp-POAB) based on planar chiral paracyclophane with photoluminescence quantum yields of up to 98 %. The enantiomers showed symmetric circularly polarized photoluminescence spectra with dissymmetry factors |gPL| of up to 1.6×10−3 in doped films. Meanwhile, the sky-blue CP-OLEDs with (R/S)-Czp-tBuCzB showed an external quantum efficiency of 32.1 % with the narrowest full-width at half-maximum of 24 nm among the reported CP-OLEDs, while the devices with (R/S)-Czp-POAB displayed the first nearly pure green CP electroluminescence with |gEL| factors at the 10−3 level. These results demonstrate the incorporation of planar chirality into MR-TADF emitter is a reliable strategy for constructing of efficient CP-OLEDs. 相似文献
9.
Mateusz Urban Paulina H. Marek-Urban Krzysztof Durka Sergiusz Luliński Piotr Pander Andrew P. Monkman 《Angewandte Chemie (International ed. in English)》2023,62(9):e202217530
10H-Dibenzo[b,e][1,4]thiaborinine 5,5-dioxide ( SO2B )—a high triplet (T1=3.05 eV) strongly electron-accepting boracycle was successfully utilised in thermally activated delayed fluorescence (TADF) emitters PXZ-Dipp-SO2B and CZ-Dipp-SO2B . We demonstrate the near-complete separation of highest occupied and lowest unoccupied molecular orbitals leading to a low oscillator strength of the S1→S0 CT transition, resulting in very long ca. 83 ns and 400 ns prompt fluorescence lifetimes for CZ-Dipp-SO2B and PXZ-Dipp-SO2B , respectively, but retaining near unity photoluminescence quantum yield. OLEDs using CZ-Dipp-SO2B as the luminescent dopant display high external quantum efficiency (EQE) of 23.3 % and maximum luminance of 18600 cd m−2 with low efficiency roll off at high brightness. For CZ-Dipp-SO2B , reverse intersystem crossing (rISC) is mediated through the vibronic coupling of two charge transfer (CT) states, without involving the triplet local excited state (3LE), resulting in remarkable rISC rate invariance to environmental polarity and polarisability whilst giving high organic light-emitting diode (OLED) efficiency. This new form of rISC allows stable OLED performance to be achieved in different host environments. 相似文献
10.
Xinliang Cai Dr. Yincai Xu Yue Pan Linjie Li Yexuan Pu Dr. Xuming Zhuang Prof. Chenglong Li Prof. Yue Wang 《Angewandte Chemie (International ed. in English)》2023,62(7):e202216473
Developing solution-processable red organic light-emitting diodes (OLEDs) with high color purity and efficiency based on multiple resonance thermally activated delayed fluorescence (MR-TADF) is a formidable challenge. Herein, by introducing auxiliary electron donor and acceptor moieties into the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) distributed positions of multiple resonance skeleton simultaneously, an effective strategy to obtain red MR-TADF emitters was represented. The proof-of-the-concept molecule BN-R exhibits a narrowband pure-red emission at 624 nm, with a high luminous efficiency of 94 % and a narrow bandwidth of 46 nm. Notably, the fabricated solution-processable pure-red OLED based on BN-R exhibits a state-of-the-art external quantum efficiency over 20 % with the Commission Internationale de I’Éclairage coordinates of (0.663, 0.337) and a long operational lifetime (LT50) of 1088 hours at an initial luminance of 1000 cd m−2. 相似文献
11.
Dr. Xiao-Chun Fan Feng Huang Hao Wu Hui Wang Ying-Chun Cheng Jia Yu Prof. Kai Wang Prof. Xiao-Hong Zhang 《Angewandte Chemie (International ed. in English)》2023,62(35):e202305580
Hindered by spectral broadening issues with redshifted emission, long-wavelength (e.g., maxima beyond 570 nm) multiple resonance (MR) emitters with full width at half maxima (FWHMs) below 20 nm remain absent. Herein, by strategically embedding diverse boron (B)/nitrogen (N) atomic pairs into a polycyclic aromatic hydrocarbon (PAH) skeleton, we propose a hybrid pattern for the construction of a long-wavelength narrowband MR emitter. The proof-of-concept emitter B4N6-Me realized orange-red emission with an extremely small FWHM of 19 nm (energy unit: 70 meV), representing the narrowest FWHM among all reported long-wavelength MR emitters. Theoretical calculations revealed that the cooperation of the applied para B-π-N and para B-π-B/N-π-N patterns is complementary, which gives rise to both narrowband and redshift characteristics. The corresponding organic light-emitting diode (OLED) employing B4N6-Me achieved state-of-the-art performance, e.g., a narrowband orange-red emission with an FWHM of 27 nm (energy unit: 99 meV), an excellent maximum external quantum efficiency (EQE) of 35.8 %, and ultralow efficiency roll-off (EQE of 28.4 % at 1000 cd m−2). This work provides new insights into the further molecular design and synthesis of long-wavelength MR emitters. 相似文献
12.
Sen Wu Le Zhang Jingxiang Wang Abhishek Kumar Gupta Ifor D. W. Samuel Eli Zysman-Colman 《Angewandte Chemie (International ed. in English)》2023,62(28):e202305182
Multiresonant thermally activated delayed fluorescence (MR-TADF) compounds are attractive as emitters for organic light-emitting diodes (OLEDs) as they can simultaneously harvest both singlet and triplet excitons to produce light in the device and show very narrow emission spectra, which translates to excellent color purity. Here, we report the first example of an MR-TADF emitter (DOBDiKTa) that fuses together fragments from the two major classes of MR-TADF compounds, those containing boron (DOBNA) and those containing carbonyl groups (DiKTa) as acceptor fragments in the MR-TADF skeleton. The resulting molecular design, this compound shows desirable narrowband pure blue emission and efficient TADF character. The co-host OLED with DOBDiKTa as the emitter showed a maximum external quantum efficiency (EQEmax) of 17.4 %, an efficiency roll-off of 32 % at 100 cd m−2, and Commission Internationale de l’Éclairage (CIE) coordinates of (0.14, 0.12). Compared to DOBNA and DiKTa, DOBDiKTa shows higher device efficiency with reduced efficiency roll-off while maintaining a high color purity, which demonstrates the promise of the proposed molecular design. 相似文献
13.
Feng Huang Dr. Xiao-Chun Fan Ying-Chun Cheng Hao Wu Xin Xiong Jia Yu Prof. Kai Wang Prof. Xiao-Hong Zhang 《Angewandte Chemie (International ed. in English)》2023,62(32):e202306413
Building blocks and heteroatom alignments are two determining factors in designing multiple resonance (MR)-type thermally activated delayed fluorescence (TADF) emitters. Carbazole-fused MR emitters, represented by CzBN derivatives, and the heteroatom alignments of ν-DABNA are two star series of MR-TADF emitters that show impressive performances from the aspects of building blocks and heteroatom alignments, respectively. Herein, a novel CzBN analog, Π-CzBN, featuring ν-DABNA heteroatom alignment is developed via facile one-shot lithium-free borylation. Π-CzBN exhibits superior photophysical properties with a photoluminescence quantum yield close to 100 % and narrowband sky blue emission with a full width at half maximum (FWHM) of 16 nm/85 meV. It also gives efficient TADF properties with a small singlet-triplet energy offset of 40 meV and a fast reverse intersystem crossing rate of 2.9×105 s−1. The optimized OLED using Π-CzBN as the emitter achieves an exceptional external quantum efficiency of 39.3 % with a low efficiency roll-off of 20 % at 1000 cd m−2 and a narrowband emission at 495 nm with FWHM of 21 nm/106 meV, making it one of the best reported devices based on MR emitters with comprehensive performance. 相似文献
14.
Tiantian Zhang Yuxin Xiao Hailan Wang Shuting Kong Rongjuan Huang Dr. Vonika Ka-Man Au Prof. Tao Yu Prof. Wei Huang 《Angewandte Chemie (International ed. in English)》2023,62(39):e202301896
Thermally activated delayed fluorescence (TADF) materials have attracted great potential in the field of organic light-emitting diodes (OLEDs). Among thousands of TADF materials, highly twisted TADF emitters have become a hotspot in recent years. Compared with traditional TADF materials, highly twisted TADF emitters tend to show multi-channel charge-transfer characters and form rigid molecular structures. This is advantageous for TADF materials, as non-radiative decay processes can be suppressed to facilitate efficient exciton utilization. Accordingly, OLEDs with excellent device performances have also been reported. In this Review, we have summarized recent progress in highly twisted TADF materials and related devices, and give an overview of the molecular design strategies, photophysical studies, and the performances of OLED devices. In addition, the challenges and perspectives of highly twisted TADF molecules and the related OLEDs are also discussed. 相似文献
15.
In this article recent progress in the development of molecules exhibiting Thermally Activated Delayed Fluorescence (TADF) is discussed with a particular focus upon their application as emitters in highly efficient organic light emitting diodes (OLEDs). The key aspects controlling the desirable functional properties, e. g. fast intersystem crossing, high radiative rate and unity quantum yield, are introduced with a particular focus upon the competition between the key requirements needed to achieve high performance OLEDs. The design rules required for organic and metal organic materials are discussed, and the correlation between them outlined. Recent progress towards understanding the influence of the interaction between a molecule and its environment are explained as is the role of the mechanism for excited state formation in OLEDs. Finally, all of these aspects are combined to discuss the ability to implement high level design rules for achieving higher quality materials for commercial applications. This article highlights the significant progress that has been made in recent years, but also outlines the significant challenges which persist to achieve a full understanding of the TADF mechanism and improve the stability and performance of these materials. 相似文献
16.
Dr. Xun Tang Mingchen Xie Dr. Zesen Lin Dr. Kirill Mitrofanov Tuul Tsagaantsooj Dr. Yi-Ting Lee Prof. Ryota Kabe Prof. Atula S. D. Sandanayaka Prof. Toshinori Matsushima Prof. Takuji Hatakeyama Prof. Chihaya Adachi 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2024,136(2):e202315210
The investigation of organic light-emitting diodes (OLEDs) and organic laser devices with thermally activated delayed fluorescence (TADF) molecules is emerging due to the potential of harnessing triplets. In this work, a boron/nitrogen multiple-resonance TADF polycyclic framework fusing carbazole units (CzBNPh) was proposed. CzBNPh exhibited a narrowband emission (<30 nm), a unity photoluminescence quantum yield, and a fast radiative rate. Consequently, CzBNPh demonstrated a low distributed feedback (DFB) lasing threshold of 0.68 μJ cm−2. Furthermore, the stimulated emission zone of CzBNPh was effectively separated from its singlet and triplet absorption, thereby minimizing the singlet-triplet annihilation under long-pulsed excitation ranging from 20 μs to 2.5 ms. Significantly, the enhanced rigid molecular conformation, thermal stability, and photo-stability resulted in improved lasing and electroluminescence stability compared to that of 5,9-diphenyl-5,9-diaza-13b-boranaphtho[3,2,1-de]anthracene (DABNA)-core. These findings indicate the potential of CzBN-core as a promising framework for achieving long-pulsed wave and electrically-pumped lasing in the future. 相似文献