首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicone surfactants—copolymers of silicone and polyethers—are useful for applications in which their high surface activity and silicone character provide performance advantages. They have recently been shown to enhance the efficiency of microemulsions. Systematic studies of their phase behavior continues to expand our knowledge of the self-assembly of large molecules. They are beginning to be used to prepare nanostructured materials. The unusual wetting properties of the trisiloxane surfactants has been much discussed, leading to a better understanding of the roles of diffusion, surfactant aggregation, and Marangoni effects in surfactant enhanced spreading.  相似文献   

2.
The importance of interfacial Interactions in governing micellization, mixed micellization, polymer-micene complexation and solubilization is examined in this review. A common thermodynamic approach is used to treat these different phenomena involving surfactant self-assembly. In all the cases, the free energy of self-assembly can be decomposed into bulk and interfacial components. The interfacial component arises from two competing contributions. One is due to the free energy of formation of the micellar core-solvent interface while the other is due to the steric and electrostatic interactions among the head groups at the micellar surface. The competition between these two contributions is shown here as determining all the fundamental features of self-assembly. Specifically, we discuss in this review the influence of interfacial interactions on the cooperativity of self-assembly, the critical micelle concentration, the size and size distribution of micelles, the transition from spherical to cylindrical micelles, the non-ideal behavior in mixed surfactants, the complexation or non-complexation of micelles with polymers, the solubilization of aliphatic and aromatic hydrocarbons and the selective and synergistic solubilization of hydrocarbon mixtures.  相似文献   

3.
采用动态激光光散射及环境扫描电镜研究了羧甲基纤维素系列高分子表面活性剂与大庆原油形成超低界面张力的机理.结果表明,CMC系列高分子表面活性剂具有与低分子量表面活性剂相比拟的表/界面活性,其水溶液的表面张力可达2835mN/m,界面张力达到10-110mN/m.碱的加入可显著降低高分子表面活性剂与原油的界面张力,在适当条件下界面张力达到超低值(10-3mN/m),可望作为三次采油的驱油剂.等效烷烃模型研究表明,用碱与原油酸性组分的作用来解释碱能使界面张力下降至超低值的传统观点是不完善的,加入碱能使高分子表面活性剂胶束解缔,胶束数量增多,胶束粒径减小,单分子自由链增加,有利于高分子表面活性剂向界面迁移和排布,这是高分子表面活性剂和碱复配体系与原油界面张力下降至超低值的主要原因.  相似文献   

4.
Emulsification of oils at liquid/liquid interfaces is of fundamental importance across a range of applications, including detergency. Adsorption and partitioning of the anionic surface active ions at the interface between two immiscible solutions is known to cause predictable chaos at the transfer potential region of the surfactant. In this work, the phenomenon that leads to the chaotic behaviour shown by sodium dodecylbenzene sulfonate (SDBS) at the water/1,2‐dichloroethane interface is applied to commercial surfactants and aqueous/glyceryl trioleate interface. Electrochemical methods, electrocapillary curves, optical microscopy and conductivity measurements demonstrated that at 1.5 mm of SDBS, surfactants are adsorbed at the interface and assemble into micelles, leading to interfacial instability. As the concentration of the anionic surfactant was enhanced to 8 and 13.4 mm , the Marangoni effect and the interfacial emulsification became more prominent. The chaotic behaviour was found to be dependent on the surfactant concentration and the electrolytes present.  相似文献   

5.
Room-temperature ionic liquids (ILs) exhibit a unique set of properties, leading to opportunities for numerous applications. To obtain a better understanding of IL interfaces at a molecular level, we combined charged surfactants with ILs and studied their interfacial behavior. The critical micelle concentration (cmc) of each surfactant-IL pair was determined from both solubility phase diagrams and isotherms. Because the cmc is equivalent to the solubility at the Krafft temperature, a connection between the solubility of the surfactant and the physical properties of the underlying ionic liquid was established. Interfacial energy was found to be the major factor affecting the surfactant aggregation process, although its magnitude depends strongly on the IL structure. The results here give insight into explaining the nature of self-assembly of surfactants at IL interfaces and the interaction between solutes and IL solvents.  相似文献   

6.
The slow motion of a liquid droplet in a shear flow in the presence of surfactants is studied. The effects of the interfacial viscosity, Gibbs elasticity, surface diffusion and bulk diffusion of surfactants in both phases are taken into account. The analytical solution of the problem for small Reynolds and Peclet numbers gives a simple criterion for estimation of the tangential mobility of the droplet interface. By applying the standard procedure for averaging of the stress tensor flux at an arbitrary surface of the dilute emulsion, an analytical formula for the viscosity of emulsions in the presence of surfactants is derived. The result is a natural generalization of the well-known formula of Einstein for the viscosity of monodisperse dilute suspensions and of the expressions derived by Taylor and Oldroyd for the viscosity of monodisperse dilute emulsions taking into account the Marangoni effect. Copyright 2001 Academic Press.  相似文献   

7.
A series of surfactant-encapsulated polyoxometalates which have different compositions, shapes, and sizes, are able to self-assemble to the highly ordered honeycomb-structured macroporous films at the air/water interface without any extra moist airflow across the solution surface. The honeycomb film pores in the average diameter of 2-3 μm are obtained, which are independent of the polyoxometalates. It is speculated that the cooled micrometer water droplets act as the necessary templates for the formation of macropores, and the stability of these water droplets is crucial during the self-assembly. With increasing the concentration of surfactants, various morphologies from lowly ordered honeycomb films to highly ordered honeycomb films and then to disordered fragments can be modulated. The interfacial tension between chloroform solution and water droplets induces the changes of films. High-resolution TEM observations indicate a close-packed lamellar structure in the ordered honeycomb film walls. The self-assembly successfully performs the transfer of functional polyoxometalates from bulk solutions to interfacial films. Consequently, the produced honeycomb films present electronic activities, such as ferromagnetism and electrochemical properties. These detailed researches will enrich the studies based on materials obtained by encapsulations in cationic surfactants to construct newly nanostructures of polyoxometalates at interfaces, and promote the potential applications of the honeycomb films of surfactant-encapsulated polyoxometalates in advanced materials.  相似文献   

8.
In the presence of soluble surfactants, the motion of liquid surfaces involves Marangoni effects. As a consequence, the surfaces exhibit elastic responses, even frequently behaving as rigid surfaces, especially at low surfactant concentration. The Marangoni effects can be conveniently quantified introducing surface viscoelastic compression parameters that characterize the mechanical response of the surface near equilibrium. Many experimental techniques allow measuring the viscoelastic parameters. However, many difficulties are encountered during the interpretation of the surface response in the various types of hydrodynamic velocity fields involved in the different techniques. The role of adsorption and desorption energy barriers appears crucial, despite the fact that little is known yet about their values. In this short review, we will present examples illustrating the different problems.  相似文献   

9.
Gemini surfactants contain two hydrophilic and two hydrophobic groups connected by a linkage close to the hydrophilic groups. Gemini surfactants have lower critical micelle concentration, higher surface activity, greater efficiency in decreasing the surface tension of water and the interfacial tension between water and oil, and better water solubility than conventional surfactants. Gemini surfactants are widely used as sterilizing, bacteriostatic, anti-foaming, and drug release agents in various enterprises including food production and industrial cleaning. They, therefore, play a very important social, economic, and industrial role. This paper briefly summarizes gemini surfactant development, structure, self-assembly, activity, classification, and characteristics, as well as focuses on the antibacterial mechanisms of these compounds. It is expected that the antibacterial properties of gemini surfactants may help slow the spread of the novel coronavirus (2019-nCoV).  相似文献   

10.
A theoretical model to clarify the molecular origin of the mechanical and thermal stabilities of O/W or W/O microemulsion is proposed in which the low concentration of surfactants (emulsifiers) is limited. We assume only a short range interaction between surfactants and a bending stiffness energy which expresses the deformation energy from a preferable monolayer membrane curvature. We have found an interrelation among the interfacial pressure, Δp, of the monolayer due to the adsorption of surfactants in the microemulsion interface, interfacial tensions of oil-water interface and of the microemulsion, and the bending stiffness energy. We conclude that the interfacial tension and the stable form of the microemulsions (O/W type or W/O type) are infuenced largely by the effect of the bending stiffness energy. The interrelationship between the therraodynamical and mechanical stabilities of microemulsions is clarified by the use of our assumption.  相似文献   

11.
在pH 3.0~5.0的HAc-NaAc缓冲溶液中, 盐酸氯丙嗪与十二烷基苯磺酸钠(SDBS)、十二烷基硫酸钠(SDS)和十二烷基磺酸钠(SLS)等阴离子表面活性剂反应形成离子缔合物时, 能导致共振瑞利散射(RRS)的显著增强并产生新的RRS光谱, 最大RRS峰分别位于277, 369和277 nm处, 方法对SDBS, SDS和SLS的检出限分别为0.018, 0.046和0.200 μg/mL, 其线性范围分别为0.09~10.0, 0.15~15.0 和0.67~12.5 μg/mL. 研究了适宜的反应条件及分析化学性质, 提出了一种用RRS技术灵敏、简便并快速测定阴离子表面活性剂的新方法.  相似文献   

12.
The motion of a nitroethane lens located at the surface of an aqueous solution of dodecyltrimethylammonium bromide is analyzed. This motion is generated by a solutal Marangoni effect, or soluto—capillary instability, induced by the transfer of the surfactant from one phase to the second one, both solvents being mutually saturated; its quasi-periodic character is demonstrated by a statistical and spectral analysis, and its characteristics, amplitude, and frequency are discussed as a function of the physicochemical conditions. The enhancement of the interfacial transfer by the Marangoni effect is evaluated. It is shown that none of the available models of linear stability analysis can account for the present results.  相似文献   

13.
Periodic Marangoni convective instability has been observed in a biphasic system during the mass transfer of cetyltrimethylammonium bromide (CTAB) from an aqueous to a dichloromethane organic phase. Visualization of the convective fluxes was possible thanks to the CTAB crystals that are formed in the aqueous phase at a temperature below the Krafft point. Surface tension and electrical potential oscillations have been shown to be correlated with the fluid motion. Surface tension measurements, representative of the adsorption state, showed fast adsorption during the convective stage, followed by a slower desorption process in the quiet stage. To account for the electrical potential data, two components need to be taken into account. In the quiet stage, the signal was comparable to surface tension, and the main contribution would result from the electrical double layer formed at the interface by charged surfactants. In the convective stage, the electrical potential was furthermore related to the velocity of the fluid in the aqueous layer. Perturbations of the charge distribution in the Gouy-Chapman layer due to tangential flows could be at the origin of the phenomenon.  相似文献   

14.
This work investigated the effect of counter‐ions and interfacial turbulence on oxygen transfer from gas to liquid phase containing ionic surfactant, and experiments were performed in a mechanically stirred reactor with flat gas–liquid interface. Counter‐ions in terms of hydration ability and polarizability influence the interfacial coverage of ionic surfactants (i.e. cetytrimethylammonium bromide (CTAB) and cetytrimethylammonium chloride) with the same hydrocarbon chain length, producing hindrance but in different extent on oxygen transfer. The addition of electrolyte (NH4Br) substantially reduced the interfacial tension and surface charge of micelles (zeta potential) in CTAB system, and this salt effect greatly compressed interfacial double layer leading to gas transfer inhibition. The surface charge, aggregation number as well as stability of micelles formed above the critical micelle concentration could also alter interfacial configuration of surfactant layer reflected by gas absorption rate. Liquid turbulence was analyzed to decide the role of surfactant present in water on gas–liquid mass transfer, since Marangoni instability effect playing positive role should be taken into consideration under moderate liquid flow, while in turbulent system, contribution of Marangoni effect became overshadowed and consequently surfactant pose ‘barrier’ effect on gas transfer due to its surface active nature. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Self-propelled oil droplets in a nonequilibrium system have drawn much attention as both a primitive type of inanimate chemical machinery and a dynamic model of the origin of life. Here, to create the pH-sensitive self-propelled motion of oil droplets, we synthesized cationic surfactants containing hydrolyzable ester linkages. We found that n-heptyloxybenzaldehyde oil droplets were self-propelled in the presence of ester-containing cationic surfactant. In basic solution prepared with sodium hydroxide, oil droplets moved as molecular aggregates formed on their surface. Moreover, the self-propelled motion in the presence of the hydrolyzable cationic surfactant lasted longer than that in the presence of nonhydrolyzable cationic surfactant. This is probably due to the production of a fatty acid by the hydrolysis of the ester-containing cationic surfactant and the subsequent neutralization of the fatty acid with sodium hydroxide. A complex surfactant was formed in the aqueous solution because of the cation and anion combination. Because such complex formation can induce both a decrease in the interfacial tension of the oil droplet and self-assembly with n-heptyloxybenzaldehyde and lauric acid in the aqueous dispersion, the prolonged movement of the oil droplet may be explained by the increase in heterogeneity of the interfacial tension of the oil droplet triggered by the hydrolysis of the ester-containing surfactant.  相似文献   

16.
A series of oxidized di(indolyl)arylmethanes (DIAM) with polyaromatic signaling moieties have been designed for monitoring local pH at the interfacial region of surfactant aggregates, such as micelles and vesicles. The oxidized DIAMs show changes in solution color from red to yellow when incorporated in cationic surfactants (at pH 7.4) and yellow to reddish pink when exposed to negatively-charged surfactants (at pH 5.0). The changes in surface charge can influence the interfacial pH (distinct from bulk pH of the medium) of the surfactant aggregates. The mechanistic studies indicate that the red-shifted absorption maxima observed in the presence of anionic amphiphiles (acidic local pH) originated from the protonated species. On the contrary, maxima in the blue region, triggered by positively charged amphiphiles (basic local pH), is attributed to the zwitterionic species. Such prototropic equilibrium affects charge transfer states of the molecules along with their self-assembly properties. Thus, it is evident that probes can predict as well as quantify the local pH change using the pseudophase ion exchange formalism. Also, the probes can detect the presence of anionic amphiphiles even when bound to phospholipid membranes.  相似文献   

17.
The effect of insoluble surfactants on drop deformation and breakup in simple shear flow is studied using a combination of a three-dimensional boundary-integral method and a finite-volume method to solve the coupled fluid dynamics and surfactant transport problem over the evolving interface. The interfacial tension depends nonlinearly on the surfactant concentration, and is described by the equation of state for the Langmuir isotherm. Results are presented over the entire range of the viscosity's ratio lambda and the surface coverage x, as well as the capillary number Ca that spans from that for small deformation to values that are beyond the critical one Ca(cr). The values of the elasticity number E, which reflects the sensitivity of the interfacial tension to the maximum surfactant concentration, are chosen in the interval 0.1 < or = E < or = 0.4 and a convection dominated regime of surfactant transport, where the influence of the surfactant on drop deformation is the most significant, is considered. For a better understanding of the processes involved, the effect of surfactants on the drop dynamics is decoupled into three surfactant related mechanisms (dilution, Marangoni stress and stretching) and their influence is separately investigated. The dependence of the critical capillary number Ca(cr)(lambda) on the surface coverage is obtained and the boundaries between different modes of breakup (tip-streaming and drop fragmentation) in the (lambda; x) plane are searched for. The numerical results indicate that at low capillary number, even with a trace amount of surfactant, the interface is immobilized, which has also been observed by previous studies. In addition, it is shown that for large Péclet numbers the use of the small deformation theory to measure the interfacial tension in the case where surfactants are present can introduce a significant error.  相似文献   

18.
Interfacial forces determine many phenomena in dispersion science and technology. Eight types of interfacial forces are classified in this article. A general equation for all of them is derived here, with particular equation for each of them (being valid for simplified geometries, such as spheres, cylinders, etc.). As a new element, an interfacial anti-stretching force is introduced in this article, being equivalent to the definition of the interfacial energy in terms of tension as understood by Young. The differences and similarities between the interfacial gradient force and the interfacial spreading force (the Marangoni force) are shown. The well-known case of the liquid bridge induced interfacial force is supplemented by its less known version of a gaseous bridge induced interfacial force.  相似文献   

19.
Two small series of cationic gemini surfactants with dodecyl tails have been synthesized and evaluated with respect to self-assembly in bulk water and at different solid surfaces. The first series contained a flexible alkane spacer and is denoted 12-n-12, with n = 2, 4, and 6. The second series had a phenylene group connected to the quaternary nitrogens in either the meta or para position and the surfactants are referred to as 12-m-Φ-12 and 12-p-Φ-12, respectively. The phenylene group is a rigid linker unit. The critical micelle concentration (cmc) was determined both by tensiometry and by conductometry, and the packing density of the surfactants at the air-water interface was calculated from the Gibbs equation. The cmc values for the geminis with a rigid spacer, 12-m-Φ-12 and 12-p-Φ-12, were of the same order of magnitude as for 12-4-12, which is the flexible surfactant that most closely matches the phenylene-based surfactants with respect to hydrophobicity, measured as log P, and distance between the positively charged nitrogen atoms. The adsorption of flexible and rigid surfactants was investigated on gold, silicon dioxide (silica), gold made hydrophobic by the self-assembly of hexadecanethiol, and gold made hydrophilic by the self-assembly of 16-hydroxyhexadecanethiol. On all of the surfaces, there was a reverse relationship between the adsorbed amount at the cmc and the length of the spacer (i.e., 12-2-12 gave the highest and 12-6-12 gave the lowest amount of adsorbed material). The adsorption pattern was similar for all of the surfactants when recorded at 25 °C. Thus, one can conclude that a rigid spacer does not render the self-assembly of a gemini surfactant difficult, neither in bulk water nor at solid surfaces. However, on one of the surfaces-untreated gold-the adsorbed amount of the geminis with a rigid spacer at 40 °C was approximately twice the values obtained at 25 °C. This is interpreted as the formation of an interdigitated bilayer at 25 °C and a regular bilayer without interpenetration of the alkyl chains at 40 °C.  相似文献   

20.
The self-assembly behaviors of a series of zwitterionic heterogemini surfactants CmH2m+1-PO4–(CH2)2-N+(CH3)2-CnH2n+1, abbreviated as Cm-P-N-Cn (m, n?=?9, 9; 9, 12; 9, 15; 9, 18; 12, 12; 12, 15; 12, 18; 15, 15; 15, 18; 18, 18), have been investigated in aqueous solution by the dissipative particle dynamics (DPD) method. Morphologies such as sphere (S), rod (R), planar grid (PG), lamella (L), honeycomb (H), one-, two-, and three-dimensional tunnels (1DT, 2DT, and 3DT) have been observed showing more diversities than those of the corresponding symmetric gemini surfactants Cm-N-N-Cm (m?=?9, 12, 15, 18). With the increase of surfactant concentration in the aqueous solution, a distinct transition path ‘‘S—R—PG—3DT—L—2DT—1DT’’ is proved to be common for all the Cm-P-N-Cn systems. Besides, the hydrophobic chain length has a significant influence on the self-assembly behaviors in the case of m?≠?n. Radial distribution function is an effective method to quantitatively evaluate the interaction and relationship between each functional group in the surfactant molecule and water. Results can provide a new insight into the self-assembly behaviors of zwitterionic heterogemini surfactants and the corresponding applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号