首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文根据Flory的溶胀理论和橡胶弹性理论,考察了顺-1 4-聚丁二烯辐射交联产物的化学网络和物理缠结网络结构特性及其对固体力学性能的影响。结果表明,交联产物的物理缠结网络密度远远大于化学交联网络密度。随着辐照剂量的增大,化学交联密度增高,物理缠结数下降。探讨了交联、缠结密度与Mooney-Rivlin方程的常数项C_1和C_2的关系。C_1来自化学交联网络的贡献;C_2来自物理缠结的贡献。物理缠结网络主要贡献于交联物体在小形变下的起始弹性模量G_0;化学交联网络则主要贡献于交联物体在大形变下的非线性弹性,即断裂强度(?)_B。  相似文献   

2.
Na B  Lv R  Xu W  Yu P  Wang K  Fu Q 《The journal of physical chemistry. B》2007,111(46):13206-13210
Irradiation of ultrahigh molecular weight polyethylene (UHMWPE) with a dose of 150 kGy by an electron beam can effectively increase the entanglement density in the amorphous phase and has little influence on the properties of the crystalline phase, which provides examples to comparatively investigate the role of lamellar coupling and entanglement density in determining the strain-hardening effect in semicrystalline polymers. The strain-hardening modulus, deduced from the Haward plots of true stress-strain curves, is inversely temperature-dependent and has a sharp transition around 65 degrees C that corresponds to the mechanical alphaI-process of the crystalline phase for both nonirradiated and irradiated samples, irrespective of the entanglement density in the amorphous phase. Lamellar coupling takes more effect in determining the strain-hardening behavior before the mechanical alphaI-process is activated. With further increasing temperature, lamellar coupling becomes weaker and the role of the entangled amorphous phase is gradually presented. However, the same temperature dependence of the strain-hardening modulus in both nonirradiated and irradiated samples indicates that the strain-hardening behavior in semicrystalline polymer is mostly determined by lamellar coupling rather than by entanglement density.  相似文献   

3.
The interface between bulk water and bulk hexane solutions of n-alkanols (H(CH(2))(m)OH, where m=20, 22, 24, or 30) is studied with x-ray reflectivity, x-ray off-specular diffuse scattering, and interfacial tension measurements. The alkanols adsorb to the interface to form a monolayer. The highest density, lowest temperature monolayers contain alkanol molecules with progressive disordering of the chain from the -CH(2)OH to the -CH(3) group. In the terminal half of the chain that includes the -CH(3) group the chain density is similar to that observed in bulk liquid alkanes just above their freezing temperature. The density in the alkanol headgroup region is 10% greater than either bulk water or the ordered headgroup region found in alkanol monolayers at the water-vapor interface. We conjecture that this higher density is a result of water penetration into the headgroup region of the disordered monolayer. A ratio of 1:3 water to alkanol molecules is consistent with our data. We also place an upper limit of one hexane to five or six alkanol molecules mixed into the alkyl chain region of the monolayer. In contrast, H(CH(2))(30)OH at the water-vapor interface forms a close-packed, ordered phase of nearly rigid rods. Interfacial tension measurements as a function of temperature reveal a phase transition at the water-hexane interface with a significant change in interfacial excess entropy. This transition is between a low temperature interface that is nearly fully covered with alkanols to a higher temperature interface with a much lower density of alkanols. The transition for the shorter alkanols appears to be first order whereas the transition for the longer alkanols appears to be weakly first order or second order. The x-ray data are consistent with the presence of monolayer domains at the interface and determine the domain coverage (fraction of interface covered by alkanol domains) as a function of temperature. This temperature dependence is consistent with a theoretical model for a second order phase transition that accounts for the domain stabilization as a balance between line tension and long range dipole forces. Several aspects of our measurements indicate that the presence of domains represents the appearance of a spatially inhomogeneous phase rather than the coexistence of two homogeneous phases.  相似文献   

4.
聚合物在材料表面通过物理吸附或化学接枝所形成的刷子状单分子层被称为聚合物刷,环境响应性聚合物刷能够根据环境微小变化可逆改变自身的物理化学性质,高分子链构象呈现伸展或塌缩状态等,显示了潜在的应用价值。本文综述了环境响应性聚合物刷的研究进展,讨论了温度响应性、pH值响应性、光响应性聚合物刷的结构特征和环境响应性机制,以及聚合物刷的各种制备方法,并着重介绍了其在智能膜、药物控释、催化、自组装、分子器件等领域的应用。  相似文献   

5.
A microscopic polymer liquid-state theory has been developed for the structure, thermodynamics and mechanical properties of strained liquid crystalline elastomers. The theory captures the experimentally observed phenomenon of spontaneous distortion and establishes a direct correlation between it and the nematic order parameter. Strain induced softening of the elastic modulus is predicted to emerge due to coupling of the induced orientational order and anisotropic interchain excluded volume interactions. Comparison of our results with limited experiments shows good qualitative and sometimes quantitative agreement. The theory predicts that deformation in the liquid crystalline state results in an increase of the amplitude of density fluctuations (compressibility) which becomes more pronounced as chain degree of polymerization and/or segmental density are decreased.  相似文献   

6.
There is much demand for crystalline covalent helical polymers. Inspired by the helical structure of collagen, we synthesized a covalent helical polymer wherein the repeating dipeptide Gly-Pro units are connected by triazole linkages. We synthesized an azide and alkyne-modified dipeptide monomer made up of the repeating amino acid sequence of collagen. In its crystals, the monomer molecules aligned in head-to-tail fashion with proximally placed azide and alkyne forming supramolecular helices. At 60 °C, the monomer underwent single-crystal-to-single-crystal (SCSC) topochemical azide-alkyne cycloaddition polymerization, yielding a covalent helical polymer as confirmed by single-crystal X-ray diffraction (SCXRD) analysis. Compared to the monomer crystals, the polymer single-crystals were very strong and showed three-fold increase in Young's modulus, which is higher than collagen, many synthetic polymers and other materials. The crystals of this covalent helical polymer could bear loads as high as 1.5 million times of their own weight without deformation. These crystals could also withstand high compression force and did not disintegrate even at an applied force of 98 kN. Such light-weight strong materials are in demand for various technological applications.  相似文献   

7.
8.
《中国化学快报》2020,31(4):1009-1013
Two-dimensional transition-metal carbide materials,or MXenes,have attracted great attention in energy-related fields due to their excellent electrical conductivity,and large interlayer spacing.In this work,a simple method involving combustion synthesis and acid treatment to prepare accordion-like Ti_3C_2T_x MXene with open structure and high crystallinity,which is employed as anode materials in lithium-ion capacitors.Due to the improved ion diffusion and electron transportation of Ti_3C_2T_x anode,the mismatched electrode kinetics can be largely alleviated to acquire an enhanced power perfo rmance.The assembled Ti_3C_2T_x-based lithium-ion capacitors provides a maximum energy density of 106 Wh/kg and still exhibits a superior energy density of 79 Wh/kg even at a higher power density of 5.2 kW/kg,which provides a new platform for MXene materials with porous and crystalline features toward both high energy and power densities.  相似文献   

9.
Elastomers of controlled molecular structure were prepared from hydroxyl-terminated atactic poly(propylene oxide) (PPO) chains having number-average molecular weights Mn in the range 800–4360 g mole?1. The chains were end-linked into noncrystallizable trifunctional networks using a specially prepared aromatic triisocyanate. The networks thus obtained were studied with regard to their stress–strain isotherms in the unswollen state, in elongation at 25°C, and with regard to their equilibrium swelling in benzene at 61°C. Values of the modulus in the limit at high deformation were in good agreement with corresponding results previously obtained on networks of poly(dimethylsiloxane) (PDMS). This is of considerable importance since use of the widely used “plateau modulus” as a measure of interchain entangling would suggest that the networks of PPO would have a much higher density of such entanglements than would the corresponding networks of PDMS. The close similarity between the moduli of the two types of networks therefore argues against the idea that such entanglements make large contributions to the equilibrium elastomeric properties of a polymer network. These values of the high deformation modulus are also in good agreement with recent molecular theories as applied to the nonaffine deformation of a “phantom” network. The values of the low deformation modulus were considerably smaller than the values predicted for an affine deformation, however, suggesting that the junction points were not firmly embedded in the network structure. This is presumably due to the relatively low degree of chain-junction entangling in the case of relatively short network chains. The swelling equilibrium results were in very good agreement with the new theory of network swelling developed by Flory.  相似文献   

10.
The polymer systems are discussed in the framework of the Landau-Ginzburg model. The model is derived from the mesoscopic Edwards Hamiltonian via the conditional partition function. We discuss flexible, semiflexible and rigid polymers. The following systems are studied: polymer blends, flexible diblock and multi-block copolymer melts, random copolymer melts, ring polymers, rigid-flexible diblock copolymer melts, mixtures of copolymers and homopolymers and mixtures of liquid crystalline polymers. Three methods are used to study the systems: mean-field model, self consistent one-loop approximation and self consistent field theory. The following problems are studied and discussed: the phase diagrams, scattering intensities and correlation functions, single chain statistics and behavior of single chains close to critical points, fluctuations induced shift of phase boundaries. In particular we shall discuss shrinking of the polymer chains close to the critical point in polymer blends, size of the Ginzburg region in polymer blends and shift of the critical temperature. In the rigid-flexible diblock copolymers we shall discuss the density nematic order parameter correlation function. The correlation functions in this system are found to oscillate with the characteristic period equal to the length of the rigid part of the diblock copolymer. The density and nematic order parameter measured along the given direction are anticorrelated. In the flexible diblock copolymer system we shall discuss various phases including the double diamond and gyroid structures. The single chain statistics in the disordered phase of a flexible diblock copolymer system is shown to deviate from the Gaussian statistics due to fluctuations. In the one loop approximation one shows that the diblock copolymer chain is stretched in the point where two incompatible blocks meet but also that each block shrinks close to the microphase separation transition. The stretching outweights shrinking and the net result is the increase of the radius of gyration above the Gaussian value. Certain properties of homopolymer/copolymer systems are discussed. Diblock copolymers solubilize two incompatible homopolymers by forming a monolayer interface between them. The interface has a positive saddle splay modulus which means that the interfaces in the disordered phase should be characterized by a negative Gaussian curvature. We also show that in such a mixture the Lifshitz tricritical point is encountered. The properties of this unusual point are presented. The Lifshitz, equimaxima and disorder lines are shown to provide a useful tool for studying local ordering in polymer mixtures. In the liquid crystalline mixtures the isotropic nematic phase transition is discussed. We concentrate on static, equilibrium properties of the polymer systems.  相似文献   

11.
The development of molecular donor/polymer acceptor blend(MD/PA)-type organic solar cells(OSCs) lags far behind other type OSCs. It is due to the large-size phase separation morphology of MD/PAblend, which results from the high crystallinity of molecular donors. In this article, to suppress the crystallinity of molecular donors, we use ternary blends to develop OSCs based on one polymer acceptor(P-BNBP-f BT) and two molecular donors(DR3 TBDTT and BTR) with similar chemical structures.The ternary OSC exhibits a power conversion efficiency(PCE) of 4.85%, which is higher than those of the binary OSCs(PCE=3.60% or 3.86%). To our best knowledge, it is the first report of ternary MD/PA-type OSCs and this PCE is among the highest for MD/PA-type OSCs reported so far. Compared with the binary blends, the ternary blend exhibits decreased crystalline size and improved face-on orientation of the donors. As a result, the ternary blend exhibits improved and balanced charge mobilities, suppressed charge recombination and increased donor/acceptor interfacial areas, which leads to the higher shortcircuit current density. These results suggest that using ternary blend is an effective strategy to manipulate active layer morphology and enhance photovoltaic performance of MD/PA-type OSCs.  相似文献   

12.
Multiwalled carbon nanotubes (MWCNTs) were functionalized with two types of chemical moieties (i.e. carboxylic, ? COOH and hydroxyl benzoic acid groups, ‐HBA) on their sidewalls in order to improve their interaction with a liquid crystalline polymer (LCP) and dispersion in LCP. We have investigated the rheological, mechanical, dynamic mechanical, and thermal properties in detail with variation of HBA‐functionalized MWCNTs in the LCP matrix. Effect of the dispersion state of the functionalized MWCNTs in the LCP matrix on the rheological behavior was also studied. The composites containing HBA‐functionalized MWCNTs showed higher complex viscosity, storage, and loss modulus than the composites with the same loading of raw MWCNTs and MWCNT‐COOH. It was suggested that the HBA‐functionalized MWCNTs exhibited a better dispersion in the polymer matrix and formed stronger CNT‐polymer interaction in the composites than the raw MWCNTs and MWCNT‐COOH, which was also confirmed by FESEM and FTIR studies. As a result, the overall mechanical performance of the HBA‐MWCNT‐LCP composites could be improved significantly. For example, the addition of 4 wt% HBA‐MWCNT to LCP resulted in the considerable improvements in the tensile strength and modulus of LCP (by 66 and 90%, respectively). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
高铁酸盐电化学合成的研究   总被引:4,自引:1,他引:4  
采用电化学阳极氧化法制备高铁酸盐,研究制备条件对电解产率的影响.结果表明,灰口铸铁是较为理想的阳极材料.在以14mol·dm-3NaOH作电解液、20℃和电流密度4.54mA·cm-2条件下电解1h,得最高电流效率为68.5%,优于使用KOH作电解液.  相似文献   

14.
We explore the collective mechanical behavior of monolayer assemblies composed of close-packed arrays of hollow silica nanoparticles using a spherical nanoindentor. Seven types of well-defined hollow nanoparticles are studied with their radii ranging from 100 to 300 nm and shell thickness ranging from 14 to 44 nm. Micromechanical models reveal the underlying deformation mechanisms during indentation, where the consecutive contacting of the indentor with an increasing number of nanoparticles results in a nonlinear increase in the indentation force with penetration depth. Each contacted hollow nanoparticle successively locally bends, flattens, and then locally buckles. The effective indentation modulus of the monolayer film, which is obtained by a Hertzian fit to the experimental data, is found to be proportional to the elastic modulus of the nanoparticle shell material and scales exponentially with the ratio of particle shell thickness t to radius R to the power of 2.3. Furthermore, we find that for a constant film density with the same (t)/(R) of the constituent nanoparticles, smaller particles with a thinner shell can provide a higher effective indentation modulus, compared to their larger diameter and thicker shell counterparts. This study provides useful insights and guidance for constructing high-performance lightweight nanoparticle films and coatings with potential applications in tailoring stiffness and mechanical energy absorption.  相似文献   

15.
Poly(3-methylthiophene) films were potentiostatically and galvanostatically synthesized on platinum electrodes in acetonitrile using lithium perchlorate, lithium tetrafluoroborate, tetra-n-butylammonium perchlorate, and tetra-n-butylammonium tetrafluoroborate as supporting electrolytes. Cyclic voltammetric analyses of the polymer films indicate the synthesis is polymerization process dependent. Constant potential syntheses, which resulted in a higher current density and were carried out at higher potentials, yielded polymer films with a higher charge capacity. Chronocoulometric results show that the charge transport rates of the films were electrolyte dependent and that tetra-n-butylammonium tetrafluoroborate yielded poly(3-methyl-thiophene) with the highest charge transport rate. The charge transport rate was found to be electric field dependent for all cases, suggesting that the films resemble a porous electrode. Scanning electron microscope analyses of the films, prepared under various conditions, indicate that the synthesis method used, and the nature of the electrolyte, strongly influence morphology and charge transport.  相似文献   

16.
Xu L  Sun Y 《Electrophoresis》2007,28(11):1658-1667
A novel stationary phase with tentacle-type metal-chelating polymer chains was fabricated for open-tubular CEC. The preparation procedure of the stationary phase included the synthesis of monomer, silanization of capillary inner wall, in situ polymerization, and metal complexation. The effects of initiator concentration and reaction time on the column capacity were investigated. To compare with the tentacle-type metal-chelating capillary column, a monolayer ligand-modified capillary was also prepared. Immobilized copper(II) capacity of the tentacle-type polymer stationary phase was nearly 900 times higher than that of the monolayer one. The electroosmotic mobility was examined for its dependence on pH as well as phosphate and ACN concentrations. The tentacle-type metal-chelating capillary with high ligand capacity has proven to afford better retention and resolution for the separation of phenylalanine, tryptophan, and tyrosine mixtures and three purine derivatives. The separation was considered to be effected by a combination of ligand exchange and electrophoretic mobility.  相似文献   

17.
F68, a triblock copolymer of the form poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), is found to effectively seal damaged cell membranes. To better understand the molecular interaction between F68 and cells, we have modeled the outer leaflet of a cell membrane with a dipalmitoylphosphatidylcholine (DPPC) monolayer spread at the air-water interface and introduced poloxamer into the subphase. Subsequent interactions of the polymer with the monolayer either upon expansion or compression were monitored using concurrent Langmuir isotherm and fluorescence microscopy measurements. To alter the activity of the poloxamer, a range of subphase temperatures from 5 to 37 degrees C was used. Lower temperatures increase the solubility of the poloxamer in the subphase and therefore lessen the amount of material at the interface, resulting in a lower equilibrium spreading pressure. Additionally, changes in temperature affect the phase behavior of DPPC. Below the triple point, the monolayer is condensed at pertinent polymer insertion pressures; for temperatures immediately above the triple point, the monolayer is a heterogeneous mix of liquid expanded and condensed phase; for the highest temperature measured, the DPPC monolayer remains completely fluid. At all temperatures, F68 inserts into DPPC monolayers at its equilibrium spreading pressure. Upon compression of the monolayer, polymers are squeezed-out at surface pressures notably higher than those for insertion, with higher temperatures leading to a higher squeeze-out pressure. An increase in temperature decreases the solvent quality of water for the poloxamer, lowering solubility of the polymer in the subphase and thus increasing its propensity to be maintained within the monolayer to higher pressures.  相似文献   

18.
The aim of this work is to provide a physical model to relate the polarizability per unit cell of oligomers to that of their corresponding infinite polymer chains. For this we propose an extrapolation method for the polarizability per unit cell of oligomers by fitting them to a physical model describing the dielectric properties of polymer chains. This physical model is based on the concept of a dielectric needle in which we assume a polymer chain to be well described by a cylindrically shaped nonconducting rod with a radius much smaller than its length. With this model we study in which way the polarizability per unit cell approaches the limit of the infinite chain. We show that within this model the macroscopic contribution of the induced electric field to the macroscopic electric field vanishes in the limit of an infinite polymer chain, i.e., there is no macroscopic screening. The macroscopic electric field becomes equal to the external electric field in this limit. We show that this identification leads to a relation between the polarizability per unit cell and the electric susceptibility of the infinite polymer chain. We test our dielectric needle model on the polarizability per unit cell of oligomers of the hydrogen chain and polyacetylene obtained earlier using time-dependent current-density-functional theory in the adiabatic local-density approximation and with the Vignale-Kohn functional. We also perform calculations using the same theory on truly infinite polymer chains by employing periodic boundary conditions. We show that by extrapolating the oligomer results according to our dielectric needle model we get good agreement with our results from calculations on the corresponding infinite polymer chains.  相似文献   

19.
The synthesis of nanocomposites via emulsion polymerization was investigated using methyl methacrylate (MMA) monomer, 10 wt % montmorillonite (MMT) clay, and a zwitterionic surfactant octadecyl dimethyl betaine (C18DMB). The particle size of the diluted polymer emulsion was about 550 nm, as determined by light scattering, while the sample without clay had a diameter of about 350 nm. The increase in the droplet size suggests that clay was present in the emulsion droplets. X-ray diffraction indicated no peak in the nanocomposites. Transmission electron microscopy showed that emulsion polymerization of MMA in the presence of C18DMB and MMT formed partially exfoliated nanocomposites. Differential scanning calorimetry showed an increase of 18 degrees C in the glass transition temperature (Tg) of the nanocomposites. A dynamic mechanical thermal analyzer also verified a similar Tg increase, 16 degrees C, for the partially exfoliated nanocomposites over poly(methyl methacrylate) (PMMA). Thermogravimetric analysis indicated a 37 degrees C increase in the decomposition temperature for a 20 wt % loss. A PMMA nanocomposite with 10 wt % C18DMB-MMT was also synthesized via in situ polymerization. This nanocomposite was intercalated and had a Tg 10 degrees lower than the emulsion nanocomposite. The storage modulus of the partially exfoliated emulsion nanocomposite was superior to the intercalated structure at higher temperatures and to the pure polymer. The rubbery plateau modulus was over 30 times higher for the emulsion product versus pure PMMA. The emulsion technique produced nanocomposites of the highest molecular weight with a bimodal distribution. This reinstates that exfoliated structures have enhanced thermal and mechanical properties over intercalated hybrids.  相似文献   

20.
This review gives an overview of the synthesis, surface and electrochemical investigations over ternary nanocomposite of conductive polymers in the development of new supercapacitors. They utilize both Faradaic and non‐Faradaic procedures to store charge, leading to higher specific capacitance and energy density, higher cell voltage, longer life cycle and moderated power density. Owing to a unique combination of features such as superb electrical conductivity, corrosion resistance in aqueous electrolytes, highly modifiable nanostructures, long cycle life and the large theoretical specific‐surface area, the use of ternary nanocomposites as a supercapacitor electrode material has become the focus of a significant amount of current scientific researches in the field of energy storage devices. In these nanocomposites, graphene not only can be utilized to provide a substrate for growing nanostructured polymers in a polymer‐carbon nanocomposite structure in order to overcome the insulating nature of conductive polymers at dedoped states, but also is capable of providing a platform for the decoration of metal oxide nanoparticles to avoid their agglomeration. In this regard, synthesis, characterization and performance of different ternary nanocomposites of conductive polymer/graphene/metal oxide are discussed in detail. These remarkable results demonstrate the exciting commercial potential for high performance, environmentally friendly and low‐cost electrical energy storage devices based on ternary nanocomposite of conductive polymer/graphene/metal oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号