首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The continuously increasing need for novel and selective methods in organic synthesis to aid drug discovery and to address environmental concerns is a constant source of stimulation to develop novel and more efficient reaction systems. This has often resulted in a focus on transition metals, ligands, and additives, with much less attention paid to the counterion(s) of the metal cation. Recently, metal salts with one or more triflimidate counterion(s) have appeared as a unique class of catalysts that display outstanding σ‐ and π‐Lewis acid character. The highly delocalized nature of the triflimidate counterion, combined with its high steric hindrance results in virtually no nucleophilic behavior and an extremely high positive charge density on the metal cation, thus enhancing its Lewis acid character. Consequently, these metal triflimidates often outperform their metal halide or triflate analogues. This Review describes general methods for the preparation of metal triflimidate salts and their use as catalysts.  相似文献   

2.
In this review, we describe the development by our research group of highly functionalized heterogeneous Olympic medal metal (gold, silver, and copper) nanoparticle catalysts using hydrotalcite as a support, aimed towards Green and Sustainable Chemistry. Olympic medal metal nanoparticles can cooperate with the basic sites on the hydrotalcite surface, providing unique and high performance catalysis in environmentally-benign organic transformations such as aerobic oxidation of alcohols, lactonization of diols and selective deoxygenation of epoxides and nitro aromatic compounds.  相似文献   

3.
The Forum Article critically summarizes investigations and discussions on the nature and role of potential active species in C-C coupling reactions of the Heck type using catalyst systems with "ligand-free" inorganic salts, simple inorganic complexes, and supported and nonsupported (colloidal) Pd particles. From a series of experiments and reports, it can be concluded that the "active species" is generated in situ in catalytic systems at higher temperature conditions (>100 degrees C). In all heterogeneous systems with solid Pd catalysts, Pd is dissolved from the solid catalyst surface under reaction conditions by a chemical reaction (complex formation and/or oxidative addition of the aryl halide), forming extremely active coordinatively unsaturated Pd species. Pd is partially or completely redeposited onto the support at the end of the reaction when the aryl halide is used up. The Pd dissolution-redeposition processes correlate with the reaction rate and are strongly influenced by the reaction conditions. Skilled preparation of the catalyst and careful adjustment of the reaction conditions allowed the development of highly active heterogeneous catalysts (Pd/C, Pd/metal oxide, and Pd/zeolite), converting aryl bromides and aryl chlorides in high yields and short reaction times. Reaction conditions have been developed allowing the conversion of bromobenzene with turnover numbers (TONs) of 10(7) and even of unreactive aryl chlorides (chlorobenzene and chlorotoluene) in high yields with simple "ligand-free" Pd catalyst systems like PdCl2 or Pd(OH)2 in the absence of any organic ligand. Simple coordinatively unsaturated anionic palladium halide (in particular, bromo) complexes [PdXn](m-) play a crucial role as precursor and active species in all ligand-free and heterogeneous catalyst systems and possibly in Heck reactions at all.  相似文献   

4.
Chiral Co(salen) complexes bearing the Lewis acid of group 13 can efficiently catalyze the reactions of carbon dioxide with epoxides in the presence of catalytic amounts of alkali metal salts, quaternary ammonium halide or ionic liquids. They exhibited excellent activity for producing enantiomerically enriched cyclic carbonates.  相似文献   

5.
Ethylenediamine bridged benzoxazine proligands were synthesized by a modified Mannich condensation reaction. The reaction of the proligands with two equivalents of AlMe3 resulted in the formation of dinuclear Al(III) compounds in high yield and purity. When the ligand binds to the Al(III) center, it forms two separate six-membered N,O-chelates with the two Al atoms that resembles the N-alkylated salan moiety. Each aluminum atom adopts a distorted tetrahedral geometry as revealed from the single-crystal X-ray diffraction studies of 1 . The catalytic activity of these aluminum compounds was investigated towards the ROP of rac-LA and ROCOP of epoxides (PO, CHO, tBuGE) and phthalic anhydride and ROCOP of CHO with CO2. These aluminum compounds showed notable catalytic activity towards the ROP and ROCOP reactions in the absence of cocatalyst.  相似文献   

6.

A complex study of sodium and potassium halides as catalysts of the addition of CO2 to epoxides to yield organic carbonates was carried out. The activity of these metal iodides was investigated. The conditions allowing achievement of a quantitative conversion of epoxides into carbonates were found by varying the temperature, carbon dioxide pressure, and available co-solvents.

  相似文献   

7.
The off-the-shelf reagent PPN+Cl- and PPN-manganese carbonylates [PPN]+[Mn(CO)4L]- (L = CO, PPh3) are good catalysts for the coupling reactions of CO2 with neat epoxides without the use of organic solvents to afford cyclic carbonates. PPN salts with weak nucleophilic anions such as PPN+BF4- and PPN+OTf- are, however, inactive for the coupling reactions.  相似文献   

8.
The reduction of transition metal salts and oxides using hydrotriorganoborates in organic media allows the production of X-ray amorphous nanopowders of metals and alloys under mild conditions. For example, the reduction of needle-shaped iron oxides at 80°C in organic solvents leads to acicular iron-magnet pigments suitable for recording magnetic signals. The reduction of TiCl4 with K[BEt3H] gives an ether-soluble [Ti(0)·0.5THF]x which serves as a catalyst for the hydrogenation of titanium or zirconium sponges and related systems and as a powerful activator for heterogeneous hydrogenation catalysts. The use of tetraalkylammonium hydrotriorganoborates as reducing agents leads to colloidal transition metals in organic phases. These colloids may also be obtained using conventional reducing agents after first reacting the metal salts with the stabilizing tetraalkylammonium halide. Colloidal metals prepared in this way serve as sources for heterogeneous metal catalysts.  相似文献   

9.
Deep Eutectic Solvent (DES)-like mixtures, based on glycerol and different halide organic and inorganic salts, are successfully exploited as new media in copper-free halodediazoniation of arenediazonium salts. The reactions are carried out in absence of metal-based catalysts, at room temperature and in a short time. Pure target products are obtained without the need for chromatographic separation. The solvents are fully characterized, and a computational study is presented aiming to understand the reaction mechanism.  相似文献   

10.
Switchable polymerization provides the opportunity to regulate polymer sequence and structure in a one‐pot process from mixtures of monomers. Herein we report the use of O2 as an external stimulus to switch the polymerization mechanism from the radical polymerization of vinyl monomers mediated by (Salen)CoIII?R [Salen=N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediamine; R=alkyl] to the ring‐opening copolymerization (ROCOP) of CO2/epoxides. Critical to this process is unprecedented monooxygen insertion into the Co?C bond, as rationalized by DFT calculations, leading to the formation of (Salen)CoIII?O?R as an active species to initiate ROCOP. Diblock poly(vinyl acetate)‐b‐polycarbonate could be obtained by ROCOP of CO2/epoxides with preactivation of (Salen)Co end‐capped poly(vinyl acetate). Furthermore, a poly(vinyl acetate)‐b‐poly(methyl acrylate)‐b‐polycarbonate triblock copolymer was successfully synthesized by a (Salen)cobalt‐mediated sequential polymerization with an O2‐triggered switch in a one‐pot process.  相似文献   

11.
A multiblock [poly(ethylene oxide)-b-spiro-polystyrene] ([(PEO-b-spiro-PS)]) copolymer with a topologically novel architecture was synthesized using thiol-ene step-growth polymerization reaction. Spiro-PS with dimercapto groups as the hard segment was synthesized in three main steps: (a) preparation of tetra-arm PS by atom transfer radical polymerization and the conversion of the chain-end group to azide functionality, (b) alkyne-azide click coupling reaction to synthesize a tricyclic PS, and (c) tactical ring opening of the tricyclic PS through disulfide/thiol redox reaction. The PEO soft segment was obtained as chain-ends modified with norbornene groups. Finally, the hydrothiolation of the highly reactive norbornene chain-ends of polyethylene glycol with the dimercapto groups of spiro-PS produced the multiblock ([(PEO-b-spiro-PS)]) copolymer in quantitative yield. The multiblock copolymer was characterized using size-exclusion chromatography, proton nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 132–138  相似文献   

12.
将有机卤素季铵盐以硅烷化键合方式嫁接到钛硅分子筛上,制备了兼备催化氧化烯烃合成环氧化物和环氧化物碳酸酯化反应的新型双功能催化剂,考察了其在丙烯、过氧化氢和二氧化碳一步合成碳酸丙烯酯的催化性能.研究表明,具有大外表面积的层剥离的钛硅分子筛是一种嫁接季铵盐合适的载体,丙基三丁基卤化铵是酯化催化性能优良的功能化基团,两者的偶合使一步法催化丙烯环氧化酯化合成碳酸丙烯酯的收率达48%.该催化剂具有较好的稳定性和重复使用性能.  相似文献   

13.
Decarboxylative halogenation reactions of alkyl carboxylic acids are highly valuable reactions for the synthesis of structurally diverse alkyl halides. However, many reported protocols rely on stoichiometric strong oxidants or highly electrophilic halogenating agents. Herein, we describe visible-light photoredox-catalyzed decarboxylative halogenation reactions of N-hydroxyphthalimide-activated carboxylic acids that avoid stoichiometric oxidants and use inexpensive inorganic halide salts as the halogenating agents. Bromination with lithium bromide proceeds under simple, transition-metal-free conditions using an organic photoredox catalyst and no other additives, whereas dual photoredox-copper catalysis is required for chlorination with lithium chloride. The mild conditions display excellent functional-group tolerance, which is demonstrated through the transformation of a diverse range of structurally complex carboxylic acid containing natural products into the corresponding alkyl bromides and chlorides. In addition, we show the generality of the dual photoredox-copper-catalyzed decarboxylative functionalization with inorganic salts by extension to thiocyanation with potassium thiocyanide, which was applied to the synthesis of complex alkyl thiocyanates.  相似文献   

14.
New high-temperature amorphous polymers with chlorine, amine, and maleimide chain-ends have been synthesized by nucleophilic polycondensation and fully characterized by 13C-NMR, 1H-NMR, and potentiometric titration. From chain-end determination, number average molecular masses were calculated. It was confirmed that transetherification during the synthesis led to a randomized polymer of the monomer residues. For nominally amine-ended polymers obtained by addition of m-aminophenol at the end of the synthesis, a small amount of hydroxyl chain-ends was observed. This is ascribed also to transetherification. Complete reaction of the amine chain-ends with maleic anhydride was demonstrated. Reaction of hydroxyl chain-ends with acetic anhydride was also observed. The thermal stability of these different polymers was investigated; lower thermal stability was observed for amine and maleimide-ended polymers. By two different methods, a Tg around 270d°C was determined for these novel amorphous aromatic polymers. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
The anionic ring-opening copolymerization (ROCOP) of epoxides, namely of ethylene oxide (EO), with anhydrides (AH) generally produces strictly alternating copolymers. With triethylborane (TEB)-assisted ROCOP of EO with AH, statistical copolymers of high molar mass including ether and ester units could be obtained. In the presence of TEB, the reactivity ratio of EO (rEO), which is normally equal to 0 in its absence, could be progressively raised to values lower than 1 or higher than 1. Conditions were even found to obtain rEO equal or close to 1. Samples of P(EO-co-ester) with minimal compositional drift could be synthesized; upon basic degradation of their ester linkages, these samples afforded poly(ethylene oxide) (PEO) diol samples of narrow molar mass distribution. In other cases where rEO were lower or higher than 1, the PEO diol samples eventually isolated after degradation exhibited a broader distribution of molar masses because of the compositional drift of initial P(EO-co-ester) samples.  相似文献   

16.
Alkali metal salts of phthalimide-N-oxyl, including Li, Na, and K were prepared and applied as novel selective catalysts to promote the cyclotrimerization of aryl and alkyl isocyanates. This paper is addressing these salts as a new class of organic nucleophilic catalysts.  相似文献   

17.
Summary. Alkali metal salts of phthalimide-N-oxyl, including Li, Na, and K were prepared and applied as novel selective catalysts to promote the cyclotrimerization of aryl and alkyl isocyanates. This paper is addressing these salts as a new class of organic nucleophilic catalysts.  相似文献   

18.
A new family of carbohydrate-based dihydroisoquinolinium salts has been prepared and tested for potential as asymmetric catalysts for the epoxidation of unfunctionalized alkene substrates, providing up to 57% ee in the product epoxides.  相似文献   

19.
The palladium complexes of the Pd-PEPPSI type with N-heterocyclic carbenes of the 1,2,4-triazole series were synthesized in 76—99% yields by the reactions of PdCl2 with 1,4-di- alkyl-1,2,4-triazolium salts in pyridine in the presence of KBr or KI as sources of halide ions and tetrabutylammonium salts as phase-transfer catalysts. The obtained complexes can be used as efficient catalysts for the Suzuki—Miyaura cross-coupling and are not inferior to the commercially available Pd-PEPPSI catalysts in activity.  相似文献   

20.
We report a modular approach toward polymer-supported, metalated, salen catalysts. This strategy is based on the synthesis of monofunctionalized Mn- and Co-salen complexes attached to a norbornene monomer via a stable phenylene-acetylene linker. The resulting functionalized monomers can be polymerized in a controlled fashion using ring-opening metathesis polymerization. This polymerization method allows for the synthesis of copolymers, resulting in an unprecedented control over the catalyst density and catalytic-site isolation. The obtained polymeric manganese and cobalt complexes were successfully used as supported catalysts for the asymmetric epoxidation of olefins and the hydrolytic kinetic resolution of epoxides. All polymeric catalysts showed outstanding catalytic activities and selectivities comparable to the original catalysts reported by Jacobsen. Moreover, the copolymer-supported catalysts are more active and selective than their homopolymer analogues, providing further proof that catalyst density and site isolation are key toward highly active and selective supported salen catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号