首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two‐dimensional (2D) layered hybrid perovskites have shown great potential in optoelectronics, owing to their unique physical attributes. However, 2D hybrid perovskite ferroelectrics remain rare. The first hybrid ferroelectric with unusual 2D multilayered perovskite framework, (C4H9NH3)2(CH3NH3)2Pb3Br10 ( 1 ), has been constructed by tailored alloying of the mixed organic cations into 3D prototype of CH3NH3PbBr3. Ferroelectricity is created through molecular reorientation and synergic ordering of organic moieties, which are unprecedented for the known 2D multilayered hybrid perovskites. Single‐crystal photodetectors of 1 exhibit fascinating performances, including extremely low dark currents (ca. 10−12 A), large on/off current ratios (ca. 2.5×103), and very fast response rate (ca. 150 μs). These merits are superior to integrated detectors of other 2D perovskites, and compete with the most active CH3NH3PbI3.  相似文献   

2.
We report herein the discovery of methylamine (CH3NH2) induced defect‐healing (MIDH) of CH3NH3PbI3 perovskite thin films based on their ultrafast (seconds), reversible chemical reaction with CH3NH2 gas at room temperature. The key to this healing behavior is the formation and spreading of an intermediate CH3NH3PbI3?xCH3NH2 liquid phase during this unusual perovskite–gas interaction. We demonstrate the versatility and scalability of the MIDH process, and show dramatic enhancement in the performance of perovskite solar cells (PSCs) with MIDH. This study represents a new direction in the formation of defect‐free films of hybrid perovskites.  相似文献   

3.
Theoretical studies have been carried out on the halogen bonding interaction between para substituted chlorobenzene (Y C6H4Cl, Y = H, NH2, CH3, F, CN, NO2) and N(CH3)3 using ab initio MP2/aug‐cc‐pVDZ and DFT based wB97XD/6‐311++G(d,p) methods. The positive electrostatic potential (VS,max) on the Cl atom and the heterolytic bond breaking enthalpy of the C Cl bond have been calculated and their role on halogen bonding is discussed. The heterolytic bond breaking enthalpy of the C Cl bond is proposed as a measure of the strength of the σ‐hole on Cl atom. The binding strength of the complexes ranging between −6.13 kJ mol−1 and −9.29 kJ mol−1 are linearly related to the VS,max of the Cl atom and the bond breaking enthalpy of the C Cl bond. In addition, energy decomposition analysis was performed on the halogen bonded complexes via symmetry adapted perturbation theory (SAPT) to predict the dominant energy component and the nature of the N···Cl interaction.  相似文献   

4.
Tin halide perovskites are potential alternatives of lead halide perovskites. However, the easy oxidation of Sn2+ to Sn4+ brings in a challenge. Recently, layered two-dimensional hybrid tin halide perovskites have been shown to partially resist the oxidation process because of the presence of hydrophobic organic molecules. Consequently, such layered hybrid perovskites are being explored for optoelectronic applications. The optical properties of layered tin halide perovskites depend on the interlayer separation and the dielectric mismatch between the organic and inorganic layers. Intercalation (insertion) of a molecular species between the layers modifies the interlayer interactions affecting the optical properties of layered hybrid perovskites. We investigated the effect of hexafluorobenzene (HFB) intercalation in phenethylammonium tin iodide [(PEA)2SnI4] using temperature-dependent (6 K to 300 K) photoluminescence (PL). HFB intercalation increases the bandgap. A strong PL quenching is observed in pristine (PEA)2SnI4 below 150 K, probably because of the presence of non-emissive states. HFB intercalation suppresses the influence of such non-emissive states resulting in an increase in PL intensity at the cryogenic temperatures. Our results highlight that a simple molecular intercalation (non-covalent interaction) into layered hybrid perovskites can significantly tailor the electronic and optical properties.  相似文献   

5.
Inorganic–organic hybrid perovskites, especially two‐dimensional (2D) layered halide perovskites, have attracted significant attention due to their unique structures and attractive optoelectronic properties, which open up a great opportunity for next‐generation photosensitive devices. Herein, we report a new 2D bilayered inorganic–organic hybrid perovskite, (C6H13NH3)2(NH2CHNH2)Pb2I7 ( HFA , where C6H13NH3+ is hexylaminium and NH2CHNH2+ is formamidinium), which exhibits a remarkable photoresponse under broadband light illumination. Structural characterizations demonstrate that the 2D perovskite structure of HFA is constructed by alternant stacking of inorganic lead iodide bilayered sheets and organic hexylaminium layers. Optical absorbance measurements combined with density functional theory (DFT) calculations suggest that HFA is a direct band gap semiconductor with a narrow band gap (Eg) of ≈2.02 eV. Based on these findings, photodetectors based on HFA crystal wafer are fabricated, which exhibit fascinating optoelectronic properties including large on/off current ratios (over 103), fast response speeds (τrise=310 μs and τdecay=520 μs) and high responsivity (≈0.95 mA W?1). This work will contribute to the design and development of new two‐dimensional bilayer inorganic–organic hybrid perovskites for high‐performance photosensitive devices.  相似文献   

6.
The effects on the C−I⋅⋅N halogen bond between iodobenzene and NH3 of placing various substituents on the phenyl ring are monitored by quantum calculations. Substituents R=N(CH3)2, NH2, CH3, OCH3, COCH3, Cl, F, COH, CN, and NO2 were each placed ortho, meta, and para to the I. The depth of the σ-hole on I is deepened as R becomes more electron-withdrawing which is reflected in a strengthening of the halogen bond, which varied between 3.3 and 5.5 kcal mol−1. In most cases, the ortho placement yields the largest perturbation, followed by meta and then para, but this trend is not universal. Parallel to these substituent effects is a progressive lengthening of the covalent C−I bond. Formation of the halogen bond reduces the NMR chemical shielding of all three nuclei directly involved in the C−I⋅⋅N interaction. The deshielding of the electron donor N is most closely correlated with the strength of the bond, as is the coupling constant between I and N, so both have potential use as spectroscopic measures of halogen bond strength.  相似文献   

7.
The long-term stability remains one of the main challenges for the commercialization of the rapidly developing hybrid organic-inorganic perovskite solar cells. Herein, we investigate the electronic and optical properties of the recently reported hybrid halide perovskite (CH2)2NH2PbI3 (AZPbI3), which exhibits a much better stability than the popular halide perovskites CH3NH3PbI3 and HC(NH2)2PbI3, by using density functional theory (DFT). We find that AZPbI3 possesses a band gap of 1.31 eV, ideal for single-junction solar cells, and its optical absorption is comparable with those of the popular CH3NH3PbI3 and HC(NH2)2PbI3 materials in the whole visible-light region. In addition, the conductivity of AZPbI3 can be tuned from efficient p-type to n-type, depending on the growth conditions. Besides, the charge-carrier mobilities and lifetimes are unlikely hampered by deep transition energy levels, which have higher formation energies in AZPbI3 according to our calculations. Overall, we suggest that the perovskite AZPbI3 is an excellent candidate as a stable high-performance photovoltaic absorber material.  相似文献   

8.
Quasi-two-dimensional (Q-2D) Dion-Jacobson (DJ) organic-inorganic hybrid perovskites based on CsPbBr3 are promising candidates for photodetection. Previous studies have predicted that the photoresponse of such materials with high inorganic-layer numbers (n) will be more protruding in this portfolio. However, until now, only bilayered (n=2) CsPbBr3-based DJ-type hybrid perovskites are obtained and the higher number of layers (n>2) remain completely unexplored, owing to the relatively high formation energies. Here, by incorporating diamine into the 3D CsPbBr3 motif, a new Q-2D trilayered CsPbBr3-based DJ-type hybrid perovskite that contains organic cation and inorganic Cs metal, namely (4-AMP)Cs2Pb3Br10 ( 1 , 4-AMP2+=4-(aminomethyl)piperidinium, n=3), is obtained. Excitingly, 1 exhibits excellent photoresponse, superior to its single-layered and bilayered counterparts. The resulting photodetectors thus exhibit a large on/off ratio (>103), high photodetectivity (6.5×1010 Jones) and fast response speed (193 μs). As far as we know, 1 is the first Q-2D CsPbBr3-based DJ-type hybrid perovskites with high n numbers. Our results may widen the range of the potential material in application of photodetection and will be helpful to design hybrid perovskites for other advanced optoelectronic devices.  相似文献   

9.
Using ab initio calculations, the geometries, interaction energies and bonding properties of chalcogen bond and halogen bond interactions between YOX4 (Y = S, Se; X = F, Cl, Br) and NH3 molecules are studied. These binary complexes are formed through the interaction of a positive electrostatic potential region (σ-hole) on the YOX4 with the negative region in the NH3. The ab initio calculations are carried out at the MP2/aug-cc-pVTZ level, through analysis of molecular electrostatic potentials, quantum theory of atoms in molecules and natural bond orbital methods. Our results indicate that even though the chalcogen and halogen bonds are mainly dominated by electrostatic effects, but the polarization and dispersion effects also make important contributions to the total interaction energy of these complexes. The examination of interaction energies suggests that the chalcogen bond is always favored over the halogen bond for all of the binary YOX4:NH3 complexes.  相似文献   

10.
Reaching the full potential of solar cells based on photo-absorbers of organic-inorganic hybrid perovskites requires highly efficient charge extraction at the interface between perovskite and charge transporting layer. This demand is generally challenged by the presence of under-coordinated metal or halogen ions, causing surface charge trapping and resultant recombination losses. These problems can be tackled by introducing a small molecule interfacial anchor layer based on dimethylbiguanide (DMBG). Benefitting from interactions between the nitrogen-containing functional groups in DMBG and unsaturated ions in CH3NH3PbI3 perovskites, the electron extraction of TiO2 is dramatically improved in association with reduced Schottky–Read–Hall recombination, as revealed by photoluminescence spectroscopy. As a consequence, the power conversion efficiency of CH3NH3PbI3 solar cells is boosted from 17.14 to 19.1 %, showing appreciably reduced hysteresis. The demonstrated molecular strategy based on DMBG enables one to achieve meliorations on key figures of merit in halide perovskite solar cells with improved stability.  相似文献   

11.
The halogen bond, similar to the hydrogen bond, is an important noncovalent interaction and plays important roles in diverse chemistry‐related fields. Herein, bromine‐ and iodine‐based halogen‐bonding interactions between two benzene derivatives (C6F5Br and C6F5I) and dimethyl sulfoxide (DMSO) are investigated by using IR and NMR spectroscopy and ab initio calculations. The results are compared with those of interactions between C6F5Cl/C6F5H and DMSO. First, the interaction energy of the hydrogen bond is stronger than those of bromine‐ and chlorine‐based halogen bonds, but weaker than iodine‐based halogen bond. Second, attractive energies depend on 1/rn, in which n is between three and four for both hydrogen and halogen bonds, whereas all repulsive energies are found to depend on 1/r8.5. Third, the directionality of halogen bonds is greater than that of the hydrogen bond. The bromine‐ and iodine‐based halogen bonds are strict in this regard and the chlorine‐based halogen bond only slightly deviates from 180°. The directional order is iodine‐based halogen bond>bromine‐based halogen bond>chlorine‐based halogen bond>hydrogen bond. Fourth, upon the formation of hydrogen and halogen bonds, charge transfers from DMSO to the hydrogen‐ and halogen‐bond donors. The CH3 group contributes positively to stabilization of the complexes.  相似文献   

12.
The synthesis of previously unknown perovskite (CH3NH3)2PdCl4 is reported. Despite using an organic cation with the smallest possible alkyl group, a 2D organic–inorganic layered Pd‐based perovskites was still formed. This demonstrates that Pd‐based 2D perovskites can be obtained even if the size of the organic cation is below the size limit predicted by the Goldschmidt tolerance‐factor formula. The (CH3NH3)2PdCl4 phase has a bulk resistivity of 1.4 Ω cm, a direct optical gap of 2.22 eV, and an absorption coefficient on the order of 104 cm?1. XRD measurements suggest that the compound is moderately stable in air, an important advantage over several existing organic–inorganic perovskites that are prone to phase degradation problems when exposed to the atmosphere. Given the recent interest in organic–inorganic perovskites, the synthesis of this new Pd‐based organic–inorganic perovskite may be helpful in the preparation and understanding of other organic–inorganic perovskites.  相似文献   

13.
Two‐dimensional hybrid perovskites are used as absorbers in solar cells. Our first‐generation devices containing (PEA)2(MA)2[Pb3I10] ( 1 ; PEA=C6H5(CH2)2NH3+, MA=CH3NH3+) show an open‐circuit voltage of 1.18 V and a power conversion efficiency of 4.73 %. The layered structure allows for high‐quality films to be deposited through spin coating and high‐temperature annealing is not required for device fabrication. The 3D perovskite (MA)[PbI3] ( 2 ) has recently been identified as a promising absorber for solar cells. However, its instability to moisture requires anhydrous processing and operating conditions. Films of 1 are more moisture resistant than films of 2 and devices containing 1 can be fabricated under ambient humidity levels. The larger bandgap of the 2D structure is also suitable as the higher bandgap absorber in a dual‐absorber tandem device. Compared to 2 , the layered perovskite structure may offer greater tunability at the molecular level for material optimization.  相似文献   

14.
Recently, with the prevalence of `perovskite fever', organic–inorganic hybrid perovskites (OHPs) have attracted intense attention due to their remarkable structural variability and highly tunable properties. In particular, the optical and electrical properties of organic–inorganic hybrid lead halides are typical of the OHP family. Besides, although three‐dimensional hybrid perovskites, such as [CH3NH3]PbX3 (X = Cl, Br or I), have been reported, the development of new organic–inorganic hybrid semiconductors is still an area in urgent need of exploration. Here, an organic–inorganic hybrid lead halide perovskite is reported, namely poly[(2‐azaniumylethyl)trimethylphosphanium [tetra‐μ‐bromido‐plumbate(II)]], {(C5H16NP)[PbBr4]}n, in which an organic cation is embedded in inorganic two‐dimensional (2D) mesh layers to produce a sandwich structure. This unique sandwich 2D hybrid perovskite material shows an indirect band gap of ~2.700 eV. The properties of this compound as a semiconductor are demonstrated by a series of optical characterizations and indicate potential applications for optical devices.  相似文献   

15.
Polar n-alkylmonoamines of general formula H3C(CH2) n NH2 (n = 1, 3, 5) interacted with layered silicate vermiculite at the solid/liquid interface. The maximum amount of amine intercalated (N f ) inside the interlamellar space were 0.62, 0.46, and 0.38 mmol g−1, to give the following order of intercalation ethyl → butyl → hexylamines. The layered vermiculite solid was suspended in deionized water and calorimetrically titrated with this series of amines, to give favorable thermodynamic data, such as exothermic enthalpy, negative Gibbs free energy and positive entropy data.  相似文献   

16.
The nature of the MoH···I bond in Cp2Mo(L)H···I‐C≡C‐R (L= H, CN, PPh2, C(CH3)3; R=NO2, Cl, Br, H, OH, CH3, NH2) was investigated using electrostatic potential analysis, topological analysis of the electron density, energy decomposition analysis and natural bond orbital analysis. The calculated results show that MoH···I interactions in the title complexes belong to halogen‐hydride bond, which is similar to halogen bonds, not hydrogen bonds. Different to the classical halogen bonds, the directionality of MoH···I bond is low; Although electrostatic interaction is dorminant, the orbital interactions also play important roles in this kind of halogen bond, and steric interactions are weak; the strength of H···I bond can tuned by the most positive electrostatic potential of the I atom. As the electron‐withdrawing ability of the R substituent in the alkyne increases, the electrostatic potential maximum of the I atom increases, which enhances the strength of the H···I halogen bond, as well as the electron transfer.  相似文献   

17.
In layered hybrid perovskites, such as (BA)2PbI4 (BA=C4H9NH3), electrons and holes are considered to be confined in atomically thin two dimensional (2D) Pb–I inorganic layers. These inorganic layers are electronically isolated from each other in the third dimension by the insulating organic layers. Herein we report our experimental findings that suggest the presence of electronic interaction between the inorganic layers in some parts of the single crystals. The extent of this interaction is reversibly tuned by intercalation of organic and inorganic molecules in the layered perovskite single crystals. Consequently, optical absorption and emission properties switch reversibly with intercalation. Furthermore, increasing the distance between inorganic layers by increasing the length of the organic spacer cations systematically decreases these electronic interactions. This finding that the parts of the layered hybrid perovskites are not strictly electronically 2D is critical for understanding the electronic, optical, and optoelectronic properties of these technologically important materials.  相似文献   

18.
Using four basis sets, 6‐311G(d,p), 6‐31+G(d,p), 6‐311++G(2d,2p), and 6‐311++G(3df,3pd), the optimized structures with all real frequencies were obtained at the MP2 level for dimers CH2O? HF, CH2O? H2O, CH2O? NH3, and CH2O? CH4. The structures of CH2O? HF, CH2O? H2O, and CH2O? NH3 are cycle‐shaped, which result from the larger bend of σ‐type hydrogen bonds. The bend of σ‐type H‐bond O…H? Y (Y?F, O, N) is illustrated and interpreted by an attractive interaction of a chemically intuitive π‐type hydrogen bond. The π‐type hydrogen bond is the interaction between one of the acidic H atoms of CH2O and lone pair(s) on the F atom in HF, the O atom in H2O, or the N atom in NH3. By contrast with above the three dimers, for CH2O? CH4, because there is not a π‐type hydrogen‐bond to bend its linear hydrogen bond, the structure of CH2O? CH4 is a noncyclic shaped. The interaction energy of hydrogen bonds and the π‐type H‐bond are calculated and discussed at the CCSD(T)/6‐311++G(3df,3pd) level. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

19.
Using four basis bets, (6‐311G(d,p), 6‐31+G(d,p), 6‐31++G(2d,2p), and 6‐311++G(3df,3pd), the optimized structures with all real frequencies were obtained at the MP2 level for the dimers CH2O? HF, CH2O? H2O, CH2O? NH3, and CH2O? CH4. The structures of CH2O? HF, CH2O? H2O, and CH2O? NH3 are cycle‐shaped, which result from the larger bend of σ‐type hydrogen bonds. The bend of σ‐type H‐bond O…H? Y (Y?F, O, N) is illustrated and interpreted by an attractive interaction of a chemically intuitive π‐type hydrogen bond. The π‐type hydrogen bond is the interaction between one of the H atoms of CH2O and lone pair(s) on the F atom in HF, the O atom in H2O, or the N atom in NH3. In contrast with the above three dimers, for CH2O? CH4, because there is not a π‐type hydrogen bond to bend its linear hydrogen bond, the structure of CH2O? CH4 is noncyclic shaped. The interaction energy of hydrogen bonds and the π‐type H‐bond are calculated and discussed at the CCSD (T)/6‐311++G(3df,3pd) level. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

20.
The trends in the properties of prereactive or charge-transfer complexes formed between the simple amines NH3, CH3NH2, (CH3)2NH, and (CH3)3N and the halogens F2, ClF, Cl2, BrF, BrCl, and Br2 were investigated by the ab initio restricted Hartree–Fock approach, the Møller–Plesset second-order method, and with several density functional theory variants using extended polarized basis sets. The most important structural parameters, the stabilization energies, the dipole moments, and other quantities characterizing the intermolecular halogen bond in these complexes are monitored, discussed, and compared. A wide range of interaction strengths is spanned in these series. Successive methyl substitution of the amine as well as increasing polarities and polarizabilities of the halogen molecules both systematically enhance the signature of charge-transfer interaction. These trends in halogen bonds of varying strength, in many aspects, parallel the features of hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号