首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Cation ordering in ABO3 perovskites adds to their chemical variety and can lead to properties such as ferrimagnetism and magnetoresistance in Sr2FeMoO6. Through high‐pressure and high‐temperature synthesis, a new type of “double double perovskite” structure has been discovered in the family MnRMnSbO6 (R=La, Pr, Nd, Sm). This tetragonal structure has a 1:1 order of cations on both A and B sites, with A‐site Mn2+ and R3+ cations ordered in columns and Mn2+ and Sb5+ having rock salt order on the B sites. The MnRMnSbO6 double double perovskites are ferrimagnetic at low temperatures with additional spin‐reorientation transitions. The ordering direction of ferrimagnetic Mn spins in MnNdMnSbO6 changes from parallel to [001] below TC=76 K to perpendicular below the reorientation transition at 42 K at which Nd moments also order. Smaller rare earths lead to conventional monoclinic double perovskites (MnR)MnSbO6 for Eu and Gd.  相似文献   

2.
Ferrimagnetic A2BB′O6 double perovskites, such as Sr2FeMoO6, are important spin‐polarized conductors. Introducing transition metals at the A‐sites offers new possibilities to increase magnetization and tune magnetoresistance. Herein we report a ferrimagnetic double perovskite, Mn2FeReO6, synthesized at high pressure which has a high Curie temperature of 520 K and magnetizations of up to 5.0 μB which greatly exceed those for other double perovskite ferrimagnets. A novel switching transition is discovered at 75 K where magnetoresistance changes from conventional negative tunneling behavior to large positive values, up to 265 % at 7 T and 20 K. Neutron diffraction shows that the switch is driven by magnetic frustration from antiferromagnetic Mn2+ spin ordering which cants Fe3+ and Re5+ spins and reduces spin‐polarization. Ferrimagnetic double perovskites based on A‐site Mn2+ thus offer new opportunities to enhance magnetization and control magnetoresistance in spintronic materials.  相似文献   

3.
Studies on the role of oxygen vacancy in structural change of nonstoichiometric perovskites and a property of oxygen-deficient perovskite-related K2NiF4 compounds are reviewed.The structural changes on which the authors focused are cation ordering and lattice distortion. The relationship between the distortion and oxygen vacancy was investigated by comparing the structures of Sr2(Sr1-xMx)TaO6-d (M = Ca2+ and Nd3+) solid solutions. It was found that distortion of a perovskite-type lattice decreased with an increasing amount of oxygen vacancies. In order to investigate the relationship between the cation ordering on octahedral sites and oxygen vacancy, structures of stoichiometric Sr2-xLaxCo1-yTa1+yO6 and oxygen-deficient Sr2-xLaxMg1-yTa1+yO6-d solid solutions were compared. The authors' work reveals that the cation ordering affects the amount of oxygen vacancies in addition to cation charge and size.  相似文献   

4.
Although two‐dimensional (2D) metal–halide double perovskites display versatile physical properties due to their huge structural compatibility, room‐temperature ferroelectric behavior has not yet been reported for this fascinating family. Here, we designed a room‐temperature ferroelectric material composed of 2D halide double perovskites, (chloropropylammonium)4AgBiBr8, using an organic asymmetric dipolar ligand. It exhibits concrete ferroelectricity, including a Curie temperature of 305 K and a notable spontaneous polarization of ≈3.2 μC cm?2, triggered by dynamic ordering of the organic cation and the tilting motion of heterometallic AgBr6/BiBr6 octahedra. Besides, the alternating array of inorganic perovskite sheets and organic cations endows large mobility‐lifetime product (μτ=1.0×10?3 cm2 V?1) for detecting X‐ray photons, which is almost tenfold higher than that of CH3NH3PbI3 wafers. As far as we know, this is the first study on an X‐ray‐sensitive ferroelectric material composed of 2D halide double perovskites. Our findings afford a promising platform for exploring new ferroelectric materials toward further device applications.  相似文献   

5.
Although two-dimensional (2D) metal–halide double perovskites display versatile physical properties due to their huge structural compatibility, room-temperature ferroelectric behavior has not yet been reported for this fascinating family. Here, we designed a room-temperature ferroelectric material composed of 2D halide double perovskites, (chloropropylammonium)4AgBiBr8, using an organic asymmetric dipolar ligand. It exhibits concrete ferroelectricity, including a Curie temperature of 305 K and a notable spontaneous polarization of ≈3.2 μC cm−2, triggered by dynamic ordering of the organic cation and the tilting motion of heterometallic AgBr6/BiBr6 octahedra. Besides, the alternating array of inorganic perovskite sheets and organic cations endows large mobility-lifetime product (μτ=1.0×10−3 cm2 V−1) for detecting X-ray photons, which is almost tenfold higher than that of CH3NH3PbI3 wafers. As far as we know, this is the first study on an X-ray-sensitive ferroelectric material composed of 2D halide double perovskites. Our findings afford a promising platform for exploring new ferroelectric materials toward further device applications.  相似文献   

6.
Excellent conversion efficiencies of over 20 % and facile cell production have placed hybrid perovskites at the forefront of novel solar cell materials, with CH3NH3PbI3 being an archetypal compound. The question why CH3NH3PbI3 has such extraordinary characteristics, particularly a very efficient power conversion from absorbed light to electrical power, is hotly debated, with ferroelectricity being a promising candidate. This does, however, require the crystal structure to be non‐centrosymmetric and we herein present crystallographic evidence as to how the symmetry breaking occurs on a crystallographic and, therefore, long‐range level. Although the molecular cation CH3NH3+ is intrinsically polar, it is heavily disordered and this cannot be the sole reason for the ferroelectricity. We show that it, nonetheless, plays an important role, as it distorts the neighboring iodide positions from their centrosymmetric positions.  相似文献   

7.
Mn2+ doped colloidal three-dimensional (3D) lead halide perovskite nanocrystal (PNC) has attracted intensive research attention; however, the low exciton binding energy and fatal optical instability of 3D PNC seriously hinder the optoelectronic application. Therefore, it remains significant to explore new stable host perovskite with strongly bound exciton to realize more desirable luminescent property. In this work, we utilized bulk one-dimensional (1D) hybrid perovskite of [AEP]PbBr5 ⋅ H2O (AEP=N-aminoethylpiperazine) as structural platform to rationally optimize the luminescent property by a controllable Mn2+ doping strategy. Significantly, the series of Mn2+-doped 1D [AEP]PbBr5 ⋅ H2O show enhanced energy transfer efficiency from the strongly bound excitons of host material to 3d electrons of Mn2+ ions, resulting in tunable broadband light emissions from weak yellow to strong red spectral range with highest photoluminescence quantum yield up to 28.41 %. More importantly, these Mn2+-doped 1D perovskites display ultrahigh structural and optical stabilities in humid atmosphere, water and high temperature exceeding the conventional 3D PNC. Combined highly efficient, tunable and stable broadband light emissions enable Mn2+-doped 1D perovskite as excellent down-converting phosphor showcasing the potential application in white light emitting diode. This work not only provides a profound understanding of low-dimensional perovskites but also opens a new way to rationally design high-performance broadband light emitting perovskites for solid-state lighting and displaying devices.  相似文献   

8.
Polycrystalline samples of A2MnMO6 (A=Sr, Ca; M=Nb, Sb, Ru) were prepared by conventional solid state synthesis and their crystal structures were determined using neutron powder diffraction data. All six compounds can be classified as distorted, disordered perovskites. The Mn3+/M5+ distribution is disordered in all six compounds. The strontium containing compounds, Sr2MnMO6 (M=Nb, Sb, Ru), undergo out of phase rotations of the octahedra about the c-axis (tilt system a0a0c) leading to tetragonal I4/mcm space group symmetry. The calcium containing compounds, Ca2MnMO6 (M=Nb, Ru, Sb), have orthorhombic Pnma space group symmetry, as a result of a GdFeO3-type octahedral tilting distortion (tilt system ab+a). A cooperative Jahn–Teller distortion is observed in Sr2MnSbO6 and Sr2MnRuO6, but it is much smaller than the distortion observed in LnMnO3 (Ln=lanthanide ion) perovskites. It is possible that Jahn–Teller distortions of the MnO6 octahedra take place on a short-range length scale in the other four compounds, but there is little or no evidence for cooperative ordering of the local distortions. These findings demonstrate a link between orbital ordering, cation ordering and octahedral tilting.  相似文献   

9.
Given the consensus that pressure improves cation ordering in most of known materials, a discovery of pressure‐induced disordering could require recognition of an order–disorder transition in solid‐state physics/chemistry and geophysics. Double perovskites Y2CoIrO6 and Y2CoRuO6 polymorphs synthesized at 0, 6, and 15 GPa show B‐site ordering, partial ordering, and disordering, respectively, accompanied by lattice compression and crystal structure alteration from monoclinic to orthorhombic symmetry. Correspondingly, the long‐range ferrimagnetic ordering in the B‐site ordered samples are gradually overwhelmed by B‐site disorder. Theoretical calculations suggest that unusual unit‐cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2CoIrO6 and Y2CoRuO6.  相似文献   

10.
The title compound, tetrasodium nonamanganese octadecaoxide, Na4.32Mn9O18, was synthesized by reacting Mn2O3 with NaCl. One Mn atom occupies a site of 2/m symmetry, while all other atoms sit on mirror planes. The compound is isostructural with Na4Ti4Mn5O18 and suggestive of Mn3+/Mn4+ charge ordering. It has a double‐tunnel structure built up from double and triple chains of MnO6 octahedra and single chains of MnO5 square pyramids by corner sharing. Disordered Na+ cations occupy four crystallographic sites within the tunnels, including an unexpected new Na+ site discovered inside the large S‐shaped tunnel. A local‐ordering model is used to show the possible Na+ distribution, and the unit‐cell evolution during charging/discharging is explained on the basis of this local‐ordering model.  相似文献   

11.
The influence of the cobalt substitution for manganese ions in the series of the perovskites Pr0.8Na0.2Mn(1−x)CoxO3 (0?x?0.1) was investigated. The study of electric and magnetic properties was carried out on sintered polycrystalline samples. The composition of x=0.04 exhibits an insulator to metal-like (I-M) transition at ∼106 K, connected with a ferromagnetic arrangement. For x=0.1, however, an insulating behavior persists down to low temperatures in spite of the transition to the bulk ferromagnetism. The observed properties are related to an acting of the cobalt ions as point defects. They disturb the tendency to charge ordering and instead of the antiferromagnetic arrangement typical for x=0 ferromagnetic double-exchange interactions Mn3+-O2−-Mn4+ and Mn3.5+δ-O2−-Co2+, decisive for the resulting behavior, arise.  相似文献   

12.
Charge and orbital degrees of freedom determine properties of many materials, and are central to many important phenomena. At high temperatures, thermal fluctuations overcome them, and high‐symmetry structures are realized. On decreasing temperature, different charge‐ and orbital‐order transitions take place accompanied by symmetry lowering. Remarkable exceptions to this general tendency, realized in Cu‐doped BiMn7O12 quadruple perovskites, are presented. Introduction of Cu2+ produces mixtures of Mn3+ and Mn4+ and charge degree of freedom. BiCuMn6O12 (and compositions in the vicinity) exhibits well‐defined 1:3 charge order of Mn4+ and Mn3+ and orbital order of Mn3+ near room temperature, but both charge and orbital orders collapse below about 115 K with the reentrance of the high‐temperature cubic Im phase. What is interesting the collapse can be controlled by a magnetic field even without long‐range magnetic order, and the collapsed phase shows nearly zero thermal expansion.  相似文献   

13.
The effects of the random electrostatic potential due to differences in formal charge between A site R3+ (lanthanide, Y), M2+ (Ca, Sr, Ba) and Th4+ cations have been investigated in ferromagnetic AMnO3 and superconducting A2CuO4 perovskites. Series of samples in which the mean A site charge and the mean and variance of the A cation radius distribution are held constant, but the A site charge variance increases, show no significant changes of the electronic (Curie or superconducting) transition temperatures. The effect of the A cation random potentials on electronic transitions in the 3d metal oxide perovskites are insignificant in comparison to the lattice effects from the differing cation sizes.  相似文献   

14.
A new series of perovskite-like compounds CMn7O12 have been synthesized under high pressure and high temperature conditions. C is a large divalent or trivalent cation such as Ca, Cd, Sr, La and Nd. The structures of the quenched materials have been determined from powder X-ray data. They are distortions of the NaMn7O12 cubic structure. The [C2+Mn3+3](Mn3+3Mn4+)O12 compounds are trigonal (R3). The C2+ and Mn3+ as well as the Mn3+ and Mn4+ cations are ordered on the corresponding A and B sites of the perovskite structure, respectively. The [C3+Mn3+3] (Mn3+4)O12 compounds are monoclinic (I 2m). In these compounds the order exists only in the A sites. It is shown that the lower symmetry may be the result of a cooperative Jahn-Teller effect of the Mn3+ cations occupying the B sites.  相似文献   

15.
Two-dimensional (2D)-halide perovskites have been enriched over recent years to offer remarkable features from diverse chemical structures and environmental stability endowed with exciting functionalities in photoelectric detectors and phosphorescence systems. However, the low conversion efficiency of singlet to triplet in 2D hybrid halide perovskites reduces phosphorescence lifetimes. In this study, the long persistent luminescence of 2D all-inorganic perovskites with a self-assembled 2D interlayer galleries structure is investigated. The results show that the decay time of the long persistent luminescence increases from 450 s to 600 s, and the luminescence color changes from cyan to orange, and the thermal stability of photoluminescence enhances dramatically after replacing Cd2+ by appropriate Mn2+ ions in 2D Cs2CdCl4 Ruddlesden-Popper phase perovskites. Furthermore, diversified anti-counterfeiting modes are fabricated to highlight the promising applications of Cs2CdCl4 perovskite systems with tunable persistent luminescence in advanced anti-counterfeiting. Therefore, our studies provide a novel model for realizing tunable long persistent luminescence of perovskite with 2D self-assembled layered structure for advanced anti-counterfeiting.  相似文献   

16.
Multiferroic materials have attracted great interest because of their underlying new science and promising applications in data storage and mutual control devices. However, they are still very rare and highly imperative to be developed. Here, we report an organic–inorganic hybrid perovskite trimethylchloromethylammonium chromium chloride (TMCM–CrCl3), showing the coexistence of magnetic and electric orderings. It displays a paraelectric–ferroelectric phase transition at 397 K with an Aizu notation of 6/mFm, and spin-canted antiferromagnetic ordering with a Néel temperature of 4.8 K. The ferroelectricity originates from the orientational ordering of TMCM cations, and the magnetism is from the [CrCl3] framework. Remarkably, TMCM–CrCl3 is the first experimentally confirmed divalent Cr2+-based multiferroic material as far as we know. A new category of hybrid multiferroic materials is pointed out in this work, and more Cr2+-based multiferroic materials will be expectedly developed in the future.

An organic–inorganic hybrid perovskite Trimethylchloromethylammonium chromium(ii) chloride (TMCM–CrCl3) can simultaneously show excellent ferroelectricity and antiferromagnetism, which is the first experimentally confirmed Cr2+-based multiferroic material.  相似文献   

17.
Two‐dimensional (2D) layered hybrid perovskites have shown great potential in optoelectronics, owing to their unique physical attributes. However, 2D hybrid perovskite ferroelectrics remain rare. The first hybrid ferroelectric with unusual 2D multilayered perovskite framework, (C4H9NH3)2(CH3NH3)2Pb3Br10 ( 1 ), has been constructed by tailored alloying of the mixed organic cations into 3D prototype of CH3NH3PbBr3. Ferroelectricity is created through molecular reorientation and synergic ordering of organic moieties, which are unprecedented for the known 2D multilayered hybrid perovskites. Single‐crystal photodetectors of 1 exhibit fascinating performances, including extremely low dark currents (ca. 10−12 A), large on/off current ratios (ca. 2.5×103), and very fast response rate (ca. 150 μs). These merits are superior to integrated detectors of other 2D perovskites, and compete with the most active CH3NH3PbI3.  相似文献   

18.
Thin films of A-site co-substituted, PbTiO3 (PTO) by Ba2+ and Ca2+, i.e., PBCT70, PBCT60, PBCT50 and PBCT40 were fabricated on Pt/Ti/SiO2/Si substrates by chemical solution deposition. Structures of the samples were investigated from the viewpoint of local-, medium- and long-range order by X-ray absorption near structure (XANES), micro-Raman and infrared spectroscopies and by X-ray diffraction (XRD). The films thickness were determined by using field-emission scanning electron microscope. The experimental results demonstrate that BaO12 clusters are the critical dominant ferroelectricity cause in PBCT thin films rather than CaO12 clusters. XRD analysis which was applied to investigate the crystal symmetry indicates the absence of long-range structural distortion for samples at higher concentrations of Ba2+ and Ca2+. However, an analysis of structural medium- and local-range order such as infrared, micro-Raman and XANES spectroscopies revealed that symmetry changes are much more prominent; i.e., local structural distortions remain. Temperature-dependent dielectric permittivity measurements confirmed a decreasing ferroelectric-to-paraelectric phase transition temperature and showed a broad phase transition with an increase in BaO12 and CaO12 clusters. In addition, the lack of long-range polar ordering for the ferroelectric dipole caused by symmetry changes decreases the remanent polarization.  相似文献   

19.
Quasi-two-dimensional (Q-2D) Dion-Jacobson (DJ) organic-inorganic hybrid perovskites based on CsPbBr3 are promising candidates for photodetection. Previous studies have predicted that the photoresponse of such materials with high inorganic-layer numbers (n) will be more protruding in this portfolio. However, until now, only bilayered (n=2) CsPbBr3-based DJ-type hybrid perovskites are obtained and the higher number of layers (n>2) remain completely unexplored, owing to the relatively high formation energies. Here, by incorporating diamine into the 3D CsPbBr3 motif, a new Q-2D trilayered CsPbBr3-based DJ-type hybrid perovskite that contains organic cation and inorganic Cs metal, namely (4-AMP)Cs2Pb3Br10 ( 1 , 4-AMP2+=4-(aminomethyl)piperidinium, n=3), is obtained. Excitingly, 1 exhibits excellent photoresponse, superior to its single-layered and bilayered counterparts. The resulting photodetectors thus exhibit a large on/off ratio (>103), high photodetectivity (6.5×1010 Jones) and fast response speed (193 μs). As far as we know, 1 is the first Q-2D CsPbBr3-based DJ-type hybrid perovskites with high n numbers. Our results may widen the range of the potential material in application of photodetection and will be helpful to design hybrid perovskites for other advanced optoelectronic devices.  相似文献   

20.
基于尖晶石晶体结构信息,本文采用热力学三亚晶格模型,将材料热力学计算和第一性原理计算相结合,研究了ZnxMn1-x Fe2O4和NixMn1-xFe2O4立方相中的Zn2+、Ni2+、Mn2+以及Fe3+在8a和16d亚晶格上的占位有序化行为。结果表明:在锰铁氧体中,室温下Mn2+完全占据在8a亚晶格上,Fe3+完全占据在16d亚晶格上,属于正尖晶石结构;随着热处理温度升高,在1 273 K达到热处理平衡时的占位构型为(Fe0.093+Mn0.912+)[Fe1.913+Mn0.092+]O4,在热处理温度升至1 473 K时,达到热处理平衡时的占位构型为(Fe0.113+ Mn0.892+)[Fe1.893+Mn0.112+]O4,均与实验结果符合较好。在锌铁氧体中,室温下Zn2+完全占据在8a亚晶格上,Fe3+完全占据在16d亚晶格上,属于正尖晶石结构;在热处理温度较高时,Zn2+和Fe3+发生部分置换,符合实验结果。在镍铁氧体中,半数的Fe3+在室温下占据在8a亚晶格上,Ni2+与剩下另一半的Fe3+共同占据在16d亚晶格上,仅在热处理温度较高的时候发生微弱变化,亦与已有的实验结果吻合。在此基础上,本文进一步通过热力学预测建立了立方相尖晶石结构的ZnxMn1-xFe2O4、NixMn1-xFe2O4复合体系中阳离子占位行为与热处理温度对占位的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号