首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The linear optical (LO) and nonlinear optical (NLO) properties of a series of isocyanurates functionalized by donor arms at the periphery are reported herein. These octupolar derivatives were obtained in a straightforward way from commercial isocyanate derivatives and were fully characterized. Although several of these compounds are known, those that exhibited the largest NLO activities are all new compounds. In terms of second-order activity, several of these derivatives exhibit remarkable activity/transparency tradeoffs. In terms of third-order activity, the longer derivatives with the stronger donor groups (X=NH(2) , NMe(2) , or NPh(2) ) were shown to possess significant two-photon absorption cross sections. These strongly luminescent derivatives exhibit two-photon absorption cross sections up to 410?GM. DFT computations were also conducted to unravel their electronic structures and to rationalize their NLO properties. To our knowledge, the present study is the first concerned with the nonlinear optical properties of these original cyclotrimers.  相似文献   

2.
Materials with large and quick non‐linear optical response, excellent photo thermal stability, cost effectiveness and off resonant non‐linear absorption (NLA) are essential requirements for a good optical limiting (OL). Among them, organic systems and π‐conjugated polymers are getting special interest because of their flexibility in structural modification that leads to the tuning of optical and electronic properties that are suitable for working under large bandwidth. Here, we report a drastic enhancement of non‐linear optical activity and exceptional OL action of two organic–inorganic hybrid system based on BODIPY and Au and Ag nanoparticles (NPs). The organic system taken was certain set of BODIPYs with different substitution at the para and meta positions. All the compounds were found to be exhibiting good reverse saturable absorption (RSA) behaviour and negative non‐linear refraction property. An attempt was made to improve the non‐linear optical (NLO) property of the BODIPY by forming nanohybrids with Au and Ag NPs, and the best NLO active candidate among the studied system was chosen for it. A significant enhancement in NLO property was observed on hybrid system formation. The optical limiting (OL) threshold of the hybrid (1 J/cm2) was reduced almost 1/5 times than that of the parent compound (5.2 J/cm2), and this value is comparable with the benchmark OL materials like C60. The mechanism behind the NLA is found to be the combination of excited state absorption (ESA) and two‐photon absorption (TPA). The enhanced NLA and OL action of C? Ag/Au nanohybrids are attributed to the synergetic effect among the two parent components as well as the local field effects of NPs. Enhancement in non‐linear optical property is found to be stronger in hybrid system with Au NPs and is due to the resonant charge transfer and intense local field effect on exciting with 532‐nm pulse compared with that of Ag NPs. Both the parent compounds and the nanohybrids exhibit negative non‐linearity, and the non‐linear refraction is also found to be enhanced. The improved NLA and OL property of hybrid system guarantees successful usage of the strategy in OL applications.  相似文献   

3.
Macrocyclic molecules play key roles in basic processes in living organisms. Free bases and the metal complexes of porphyrins exhibit a wide range of important optical properties. In these systems the position of the most intense absorption band depends on the peripheral substituents of the macrocycle. Sol-gel methods have generally allowed the successful trapping of porphyrins into inorganic networks. The materials obtained are strong and transparent monolithic gels, but in the majority of cases the red fluorescence of the porphyrins disappears with ageing. We have evaluated the effect of the type and spatial disposition of the substituents in the porphyrin macrocycle periphery on key optical properties, with particular emphasis on the conservation of red fluorescence when porphyrins are simply trapped or covalently bonded to the inorganic matrix. Here, we report the use of the sol-gel procedures to obtain monolithic gels with the hydroxyl- or amino-substituted α, β, γ, δ-tetraphenylporphyrins, (H2T(S)PP), simply trapped or covalently bonded to the SiO2 matrix.  相似文献   

4.
The linear optical (LO) and nonlinear optical (NLO) properties of a series of isocyanurates functionalized by donor arms at the periphery are reported herein. These octupolar derivatives were obtained in a straightforward way from commercial isocyanate derivatives and were fully characterized. Although several of these compounds are known, those that exhibited the largest NLO activities are all new compounds. In terms of second‐order activity, several of these derivatives exhibit remarkable activity/transparency tradeoffs. In terms of third‐order activity, the longer derivatives with the stronger donor groups (X=NH2, NMe2, or NPh2) were shown to possess significant two‐photon absorption cross sections. These strongly luminescent derivatives exhibit two‐photon absorption cross sections up to 410 GM. DFT computations were also conducted to unravel their electronic structures and to rationalize their NLO properties. To our knowledge, the present study is the first concerned with the nonlinear optical properties of these original cyclotrimers.  相似文献   

5.
《Chemical physics letters》2006,417(1-3):277-281
Despite many advantages toward nonlinear optical (NLO) waveguide devices, NLO polymers have not been adopted successfully into practical wavelength converters due to their high absorption losses. Empirical and theoretical understandings about NLO susceptibility imply the fundamental trade-off between optical absorption and nonlinearity. Our theoretical analysis elucidates the effect of absorption losses on second-harmonic generation (SHG). We compare analytically maximum conversion efficiencies for several NLO polymers and found a convincing approach for the development of NLO polymers with the optimum combination of high optical nonlinearity and low material absorption, which leads us to realize efficient polymeric SHG devices.  相似文献   

6.
We present a quantum-chemical analysis of the central metal ion's effect on first hyperpolarizabilities and two-photon absorption (TPA) cross sections at the infrared region of a series of push-pull porphyrins whose synthesis and NLO properties have been reported earlier (J. Am. Chem. Soc. 2005, 127, 9710). The molecular geometries are obtained via the B3LYP/6-31G(d,p) level optimization including SCRF/PCM approach, and the NLO and TPA properties are calculated with the ZINDO/CV method including solvent effects. It is found that the CT transition between the metal ion's d orbital and the macrocycle pi orbitals plays an important role on NLO and TPA properties of metal porphyrins. Our data suggest a new approach to enhance TPA properties of porphyrin materials. We also present a quantum-chemical analysis on porphyrin dimers and trimers to understand the relationship between structural and collective NLO properties. It has been observed that beta values can be improved about an order of magnitude and TPA properties can be enhanced by 2 orders of magnitude by the formation of a trimer. The importance of our results with respect to the design of photonic and photodynamic therapy materials have been discussed.  相似文献   

7.
Multi‐photon absorption (MPA) is among the most prominent nonlinear optical (NLO) effects and has applications, for example in telecommunications, defense, photonics, and bio‐medicines. Established MPA materials include dyes, quantum dots, organometallics and conjugated polymers, most often dispersed in solution. We demonstrate how metal–organic frameworks (MOFs), a novel NLO solid‐state materials class, can be designed for exceptionally strong MPA behavior. MOFs consisting of zirconium‐ and hafnium‐oxo‐clusters and featuring a chromophore linker based on the tetraphenylethene (TPE) molecule exhibit record high two‐photon absorption (2PA) cross‐section values, up to 3600 GM. The unique modular building‐block principle of MOFs allows enhancing and optimizing their MPA properties in a theory‐guided approach by combining tailored charge polarization, conformational strain, three‐dimensional arrangement, and alignment of the chromophore linkers in the crystal.  相似文献   

8.
Covalent organic frameworks (COFs) have garnered immense scientific interest among porous materials because of their structural tunability and diverse properties. However, the response of such materials toward laser‐induced nonlinear optical (NLO) applications is hardly understood and demands prompt attention. Three novel regioregular porphyrin (Por)‐based porous COFs—Por‐COF‐HH and its dual metalated congeners Por‐COF‐ZnCu and Por‐COF‐ZnNi—have been prepared and present excellent NLO properties. Notably, intensity‐dependent NLO switching behavior was observed for these Por‐COFs, which is highly desirable for optical switching and optical limiting devices. Moreover, the efficient π‐conjugation and charge‐transfer transition in ZnCu‐Por‐COF enabled a high nonlinear absorption coefficient (β=4470 cm/GW) and figure of merit (FOM=σ1o, 3565) value compared to other state‐of‐the‐art materials, including molecular porphyrins (β≈100–400 cm/GW), metal–organic frameworks (MOFs; β≈0.3–0.5 cm/GW), and graphene (β=900 cm/GW).  相似文献   

9.
A(2)B(2)-type push-pull porphyrins with a strong intramolecular dipole moment have been prepared via Heck and Suzuki coupling reactions as novel materials for use in nonlinear optics (NLO); they display saturable (SA) and reverse saturable absorption (RSA) properties at 532 nm and their nonlinear optical response is characterized by RSA occurring at lower intensity levels whereas the onset of SA prevails at higher levels.  相似文献   

10.
From our research for novel non-linear optical (NLO) materials for frequency doublers and optical modulators we report on new ferroelectric liquid crystals, which for the first time, exhibit second order NLO coefficients (for example d22 = 5 pm V-1, which are comparable to those of state of the art inorganic NLO materials. The novel compounds contain 5-amino-2-nitrophenyl groups attached close to the chiral centres. The switching behaviour of the new compounds, their spontaneous polarization, as well as their frequency doubling of Nd:YAG laser pulses in the S*c and in the glass state, are reported. Moreover their waveguiding properties are presented.  相似文献   

11.
Nonlinear optical (NLO) materials can be useful for a variety of applications varying from modulation of optical signals facilitated by the electro-optic effect-the effect whereby the refractive index of a material changes in response to an applied electric field-to microfabrication, sensing, imaging, and cancer therapy facilitated by multiphoton absorption, wherein molecules simultaneously absorb two or more photons of light. This short Focus article is a brief personal perspective of some of the key advances in second-order NLO materials and in multiphoton-absorbing materials, and of how and why these advances have led to renewed interest in organic NLO materials.  相似文献   

12.
This work is the continuation of our previous experimental and theoretical studies aiming at designing efficient nonlinear optical (NLO) switches derived from the benzazolo-oxazolidine core. Here, we report the synthesis and the characterization of the linear and nonlinear optical properties of benzothiazolo[2,3-b]oxazolidine acidochromes by means of hyper-Rayleigh scattering as well as quantum chemical calculations. It is shown that these new derivatives incorporating a benzothiazole subunit exhibit very high static first hyperpolarizability values in their acido-generated form. On the basis of previously reported NLO responses of indolino- and benzimidazolo-oxazolidines, structure-properties relationships within the benzazolo-oxazolidine series are proposed.  相似文献   

13.
 Four phenoxysilicon networks for nonlinear optical (NLO) applications were designed and prepared by an extended sol-gel process without additional H2O and catalyst. All poled polymer network films possess high second-order nonlinear optical coefficients (d33) of 10-?~10-8 esu. The investigation of NLO temporal stability at room temperature and elevated temperature (120℃) indicated that these films exhibit high d33 stability because the orientation of the chromophores are locked in the phenoxysilicon organic/inorganic networks.  相似文献   

14.
A series of novel 21,23-dithiaporphyrins have been synthesized and determination of their optical nonlinearities demonstrated that they have much larger nonlinear refractive cross section than normal porphyrins and exhibit reverse saturable absorption.  相似文献   

15.
The development of new nonlinear optical (NLO) materials for deep‐ultraviolet (DUV) applications is in great demand. However, the synthesis of an ideal DUV NLO crystal is a serious challenge. Herein, three new alkali‐metal fluorooxoborates, AB4O6F (A=K, Rb, and Cs, and a mixed cation between two of them), were successfully synthesized by cation regulation. It is found that all reported compounds exhibit short UV absorption edges (<190 nm), and show second harmonic generation (SHG) responses ranging from 0.8 to 1.9 KH2PO4 (KDP). Interestingly, by judicious selection of the A‐site alkali‐metal cations, the arrangement of NLO‐active structural units is fine‐tuned to an optimal configuration, which contributes to large SHG responses.  相似文献   

16.
Nonlinear optical (NLO) responses from organic dyes can be maximized when the dyes are aligned in appropriate manners in bulk materials. The use of restricted nanospaces provided by interlayer spacing of inorganic layered materials is a promising strategy for imposing suitable molecular alignments for NLO materials on dyes. The hybrid materials thus obtained exhibit salient NLO responses owing to the improved molecular orientation. In some cases, extension of the π‐electron system as a consequence of improved molecular planarity, obtained by the intercalation of a dye into the 2‐dimensional interlayer space of an inorganic layered material, is also observed as a factor that enhances NLO responses of chromophores at the molecular level. This review focuses on recent progress in the strategies for controlling the molecular orientation of NLO‐phores by employing clay minerals, which are one of the typical inorganic layered materials. In addition, development of a means for fabricating composites that satisfy the properties of an optical material, such as a sufficient size and thickness, a flat surface, and low light‐scattering characteristics is required to utilize the superior NLO properties observed for clay/dye hybrid materials for practical applications. A novel means for obtaining such a hybrid material is also outlined.  相似文献   

17.
This work exposes for the first time the remarkable influence of intramolecular group rotation on third-order nonlinear optical (NLO) performance. In order to prove the role of group rotation, we designed and synthesized two photo-response compounds tetramethyl 5,5′-(((diazene-1,2-diylbis(4,1-phenylene))bis(oxy))bis(methylene))diisophthalate (1) and 5,5′-(((diazene-1,2-diylbis(4,1-phenylene))bis(oxy))bis(methylene))diisophthalic acid (2) and investigated their NLO performance under different substituent (benzyloxy group) rotation states. 1 and 2 have dynamic benzyloxy group rotation in dilute solution and shows reverse saturated absorption (RSA). When the benzyloxy group rotation of 1 and 2 was restricted by PMMA, their NLO performance not only converted into saturated absorption (SA) and NLO refraction behaviours, but also hardly changed after isomerization. Interestingly, we also restricted the benzyloxy group rotation in solution to a certain extent through photo-induced trans→cis isomerization, and found that the NLO performances of cis isomers of 1 and 2 exhibit SA and positive refraction and are similar to those of 1 -PMMA and 2 -PMMA. This work provides a new exploratory method for studying the influencing factors of third-order NLO performance.  相似文献   

18.
卟啉及金属卟啉在自然界中广泛存在,其光学、电化学等特性可通过分子结构中多个反应位点进行调控. 随着全球能源环境问题日益凸显,卟啉在太阳能电池、光催化制氢领域的研究成为热点. 本文简介了作者课题组近年来通过国内外合作开展的D-π-A结构卟啉分子结构改性及其对光电化学性质和器件光伏特性影响的进展,并对未来卟啉光电化学研究的发展进行了简要的探讨.  相似文献   

19.
Current applications in porphyrin chemistry require the use of unsymmetrically substituted porphyrins. Many current industrial interests in optics and biomedicine require systems with either push-pull (electron-donating and -withdrawing groups) or amphiphilic systems (hydrophobic and hydrophilic groups). In this context we present the class of 5,10-A(2)B(2)-type porphyrins for which two different substituents are positioned in diagonally opposite meso positions. Thus, the intramolecular dipole moment in these tetrapyrroles is positioned along a β-β vector passing through two pyrrole rings. This is opposite to the situation of the frequently used 5,15-A(2)BC porphyrins for which the dipole moment is oriented along a meso-meso axis. We have elaborated syntheses of the 5,10-A(2)B(2) porphyrins by using transition-metal-catalyzed transformations of 5,10-A(2) porphyrins or direct substitutions reactions thereof; this gives the target molecules in 22-77% overall yields. The compounds exhibit interesting structural, spectroscopic, and optical features and can serve as building blocks for new porphyrin arrays and applications.  相似文献   

20.
Abstract

From our research for novel non-linear optical (NLO) materials for frequency doublers and optical modulators we report on new ferroelectric liquid crystals, which for the first time, exhibit second order NLO coefficients (for example d 22 = 5 pm V?1, which are comparable to those of state of the art inorganic NLO materials. The novel compounds contain 5-amino-2-nitrophenyl groups attached close to the chiral centres. The switching behaviour of the new compounds, their spontaneous polarization, as well as their frequency doubling of Nd:YAG laser pulses in the S*c and in the glass state, are reported. Moreover their waveguiding properties are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号