首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
A tetrahedral CuII alkylperoxido complex [CuII(TMG3tach)(OOCm)]+ ( 1OOCm ) (TMG3tach={2,2′,2′′-[(1s,3s,5s)-cyclohexane-1,3,5-triyl]tris-(1,1,3,3-tetramethyl guanidine)}, OOCm=cumyl peroxide) is prepared and characterized by UV/Vis, cold-spray ionization mass spectroscopy (CSI-MS), resonance Raman, and EPR spectroscopic methods. Product analysis of the self-decomposition reaction of 1OOCm in acetonitrile (MeCN) indicates that the reaction involves O−O bond homolytic cleavage of the peroxide moiety with concomitant C−H bond activation of the solvent molecule. When an external substrate such as 1,4-cyclohexadiene (CHD) is added, the O−O bond homolysis leads to C−H activation of the substrate. Furthermore, the reaction of 1OOCm with 2,6-di-tert-butylphenol derivatives produces the corresponding phenoxyl radical species (ArO.) together with a CuI complex through a concerted proton-electron transfer (CPET) mechanism. Details of the reaction mechanisms are explored by DFT calculations.  相似文献   

2.
We report a challenging copper-catalyzed Cformyl−H arylation of salicylaldehydes with arylboronic acids that involves unique salicylaldehydic copper species that differ from reported salicylaldehydic rhodacycles and palladacycles. This protocol has high chemoselectivity for the Cformyl−H bond compared to the phenolic O−H bond involving copper catalysis under high reaction temperatures. This approach is compatible with a wide range of salicylaldehyde and arylboronic acid substrates, including estrone and carbazole derivatives, which leads to the corresponding arylation products. Mechanistic studies show that the 2-hydroxy group of the salicylaldehyde substrate triggers the formation of salicylaldehydic copper complexes through a CuI/CuII/CuIII catalytic cycle.  相似文献   

3.
We report herein the first nonheme CuFe oxygen reduction catalyst ([CuII(bpbp)(μ-OAc)2FeIII]2+, CuFe−OAc ), which serves as a functional model of cytochrome c oxidase and can catalyze oxygen reduction to water with a turnover frequency of 2.4×103 s−1 and selectivity of 96.0 % in the presence of Et3NH+. This performance significantly outcompetes its homobimetallic analogues (2.7 s−1 of CuCu−OAc with %H2O2 selectivity of 98.9 %, and inactive of FeFe−OAc ) under the same conditions. Structure-activity relationship studies, in combination with density functional theory calculation, show that the CuFe center efficiently mediates O−O bond cleavage via a CuII(μ-η1 : η2-O2)FeIII peroxo intermediate in which the peroxo ligand possesses distinctive coordinating and electronic character. Our work sheds light on the nature of Cu/Fe heterobimetallic cooperation in oxygen reduction catalysis and demonstrates the potential of this synergistic effect in the design of nonheme oxygen reduction catalysts.  相似文献   

4.
Carbonylation of ethanol with CO2 as carbonyl source into value-added esters is of considerable significance and interest, while remains of great challenge due to the harsh conditions for activation of inert CO2 in that the harsh conditions result in undesired activation of α-C−H and even cleavage of C−C bond in ethanol to deteriorate the specific activation of O−H bond. Herein, we propose a photo-thermal cooperative strategy for carbonylation of ethanol with CO2, in which CO2 is activated to reactive CO via photo-catalysis with the assistance of *H from thermally-catalyzed dissociation of alcoholic O−H bond. To achieve this proposal, an interfacial site and oxygen vacancy both abundant SrTiCuO3-x supported Cu2O (Cu2O-SrTiCuO3-x) has been designed. A production of up to 320 μmol g−1 h−1 for ethyl formate with a selectivity of 85.6 % to targeted alcoholic O−H activation has been afforded in photo-thermal assisted gas-solid process under 3.29 W cm−1 of UV/Vis light irradiation (144 °C) and 0.2 MPa CO2. In the photo-driven activation of CO2 and following carbonylation, CO2 activation energy decreases to 12.6 kJ mol−1, and the cleavage of alcoholic α-C−H bond has been suppressed.  相似文献   

5.
We report a porous three-dimensional anionic tetrazolium based CuI−MOF 1 , which is capable of cleaving the N−H bond of ammonia and primary amine, as well as the O−H bond of H2O along with spontaneous H2 evolution. In the gas-solid phase reaction of 1 with ammonia and water vapor, CuI−MOF 1 was gradually oxidized to NH2−CuII−MOF and OH−CuII−MOF, through single-crystal-to-single-crystal (SCSC) structural transformations, which was confirmed by XPS, PXRD and X-ray single-crystal diffraction. Density functional theory (DFT) demonstrated that CuI−MOF could lower N−H bond dissociation free energy of ammonia through coordination-induced bond weakening and promote H2 evolution by the reduction potential of 1 . To our knowledge, this is the first example of MOFs that activate ammonia and amine in gas-solid manner.  相似文献   

6.
The dioxygen activation of a series of CuICuICuI complexes based on the ligands ( L ) 3,3′‐(1,4‐diazepane‐ 1,4‐diyl)bis(1‐{[2‐(dimethylamino)ethyl](methyl)amino}propan‐2‐ol) ( 7‐Me ) or 3,3′‐(1,4‐diazepane‐1,4‐diyl)bis(1‐{[2‐(diethylamino)ethyl](ethyl)amino}propan‐2‐ol) ( 7‐Et ) forms an intermediate capable of mediating facile O‐atom transfer to simple organic substrates at room temperature. To elucidate the dioxygen chemistry, we have examined the reactions of 7‐Me , 7‐Et , and 3,3′‐(1,4‐diazepane‐1,4‐diyl)bis[1‐(4‐methylpiperazin‐1‐yl)propan‐2‐ol] ( 7‐N‐Meppz ) with dioxygen at ?80, ?55, and ?35 °C in propionitrile (EtCN) by UV‐visible, 77 K EPR, and X‐ray absorption spectroscopy, and 7‐N‐Meppz and 7‐Me with dioxygen at room temperature in acetonitrile (MeCN) by diode array spectrophotometry. At both ?80 and ?55 °C, the mixing of the starting [CuICuICuI( L )]1+ complex ( 1 ) with O2‐saturated propionitrile (EtCN) led to a bright green solution consisting of two paramagnetic species: the green dioxygen adduct [CuIICuII(μ‐η22‐peroxo)CuII( L )]2+ ( 2 ) and the blue [CuIICuII(μ‐O)CuII( L )]2+ species ( 3 ). These observations are consistent with the initial formation of [CuIICuII(μ‐O)2CuIII( L )]1+ ( 4 ), followed by rapid abortion of this highly reactive species by intercluster electron transfer from a second molecule of complex 1 to give the blue species 3 and subsequent oxygenation of the partially oxidized [CuIICuICuI( L )]2+ ( 5 ) to form the green dioxygen adduct 2 . Assignment of 2 to [CuIICuII(μ‐η22‐peroxo)CuII( L )]2+ is consistent with its reactivity with water to give H2O2 and the blue species 3 , as well as its propensity to be photoreduced in the X‐ray beam during X‐ray absorption experiments at room temperature. In light of these observations, the development of an oxidation catalyst based on the tricopper system requires consideration of the following design criteria: 1) rapid dioxygen chemistry; 2) facile O‐atom transfer from the activated cluster to substrate; and 3) a suitable reductant to rapidly regenerate complex 1 to accomplish efficient catalytic turnover.  相似文献   

7.
CuII catalyst is less efficient at room temperature for C−S cross-coupling. C−S cross-coupling by CuII catalyst at room temperature is not reported; however, doping of copper with molybdenum metal has been realized here to be more efficient for C−S cross-coupling in comparison to general CuII catalyst. The doped catalyst CuMoO4 nanoparticle is found to be more efficient than copper. The catalyst works under mild conditions without any ligand at room temperature and is recyclable and effective for a wide range of thiols and haloarenes (ArI, ArBr, ArF) from milligram to gram scale. The copper-based bimetallic catalyst is developed and recognized for C−S cross-coupling of haloarenes with alkyl and aryl thiols.  相似文献   

8.
The title compound, [CuNa(C4H3O7S)(C10H8N2)(H2O)3]n, consists of one CuII cation, one NaI cation, one 2‐sulfonatobutanedioate trianion (SSC3−), one 2,2′‐bipyridyl (bpy) ligand and three coordinated water molecules as the building unit. The coordination of the CuII cation is composed of two pyridyl N atoms, one water O atom and two carboxylate O atoms in a distorted square‐pyramidal coordination geometry with an axial elongation. The NaI cation is six‐coordinated by three water molecules and three carboxylate O atoms from three SSC3− ligands in a distorted octahedral geometry. Two SSC3− ligands link two CuII cations to form a Cu2(SSC)2(bpy)2 macrocyclic unit lying across an inversion centre, which is further linked by NaI cations via Na—O bonds to give a one‐dimensional chain. Interchain hydrogen bonds link these chains to form a two‐dimensional layer, which is further extended into a three‐dimensional supramolecular framework through π–π stacking interactions. The thermal stability of the title compound has also been investigated.  相似文献   

9.
The aluminum(I) compound NacNacAl (NacNac=[ArNC(Me)CHC(Me)NAr], Ar=2,6-iPr2C6H3, 1 ) shows diverse and substrate-controlled reactivity in reactions with N-heterocycles. 4-Dimethylaminopyridine (DMAP), a basic substrate in which the 4-position is blocked, induces rearrangement of NacNacAl by shifting a hydrogen atom from the methyl group of the NacNac backbone to the aluminum center. In contrast, C−H activation of the methyl group of 4-picoline takes place to produce a species with a reactive terminal methylene. Reaction of 1 with 3,5-lutidine results in the first example of an uncatalyzed, room-temperature cleavage of an sp2 C−H bond (in the 4-position) by an AlI species. Another reactivity mode was observed for quinoline, which undergoes 2,2′-coupling. Finally, the reaction of 1 with phthalazine produces the product of N−N bond cleavage.  相似文献   

10.
The title complex, [CuCl(C4H8OS)]n, contains infinite spiral (CuS)n chains linked by bridging Cl atoms into layers. The Cl atoms do not form polymeric fragments with CuI, but combine into isolated centrosymmetric Cu2Cl2 units. The compound is non‐isomorphous with the Br‐containing analogue, which contains Cu8S8 rings linked by Br atoms into chains. The O atom of the 1,4‐oxathiane mol­ecule does not realize its coordination abilities in the known copper(I)–halide complexes, while in copper(II)–halide complexes, oxathiane is coordinated via the S and O atoms. This falls into a pattern of the preferred inter­actions, viz. weak acid (CuI atom) with weak base (S atom) and harder acid (CuII atom) with harder base (O atom).  相似文献   

11.
Al/P- and Ga/P-based frustrated Lewis pairs (FLPs) reacted with an azirine under mild conditions under cleavage of the heterocycle on two different positions. Opening of the C−C bond yielded an unusual nitrile–ylide adduct in which a C−N moiety coordinated to the FLP backbone. Cleavage of a C−N bond afforded the thermodynamically favored enamine adduct with the N atom bound to P and Al or Ga atoms. Ring closure was observed upon treatment of an Al/P FLP with electronically unsaturated substrates (4-(1-cyclohexenyl)-1-aza-but-1-en-3-ynes) and yielded by C−N bond formation hexahydroquinoline derivatives, which coordinated to the FLP through P−C and Al−C bonds. Diphenylcyclopropenone showed a diverse reactivity, which depending on steric shielding and the polarizing effect of Al or Ga atoms afforded different products. An AltBu2/P FLP yielded an adduct with the C=O group coordinated to P and Al. The dineopentyl derivative gave an equilibrium mixture consisting of a similar product and a simple adduct with O bound to Al and a three-coordinate P atom. Both compounds co-crystallize. The Ga/P FLP only formed the simple adduct with the same substrate. Rearrangement resulted in all cases in C3-ring cleavage and migration of a mesityl group from P to a former ring C atom by C−C bond formation. Diphenylthiocyclopropenone (evidence for the presence of P=C bonds) and an imine derivative afforded similar products.  相似文献   

12.
Carboxylate esters have many desirable features as electrophiles for catalytic cross-coupling: they are easy to access, robust during multistep synthesis, and mass-efficient in coupling reactions. Alkenyl carboxylates, a class of readily prepared non-aromatic electrophiles, remain difficult to functionalize through cross-coupling. We demonstrate that Pd catalysis is effective for coupling electron-deficient alkenyl carboxylates with arylboronic acids in the absence of base or oxidants. Furthermore, these reactions can proceed by two distinct mechanisms for C−O bond activation. A Pd0/II catalytic cycle is viable when using a Pd0 precatalyst, with turnover-limiting C−O oxidative addition; however, an alternative pathway that involves alkene carbopalladation and β-carboxyl elimination is proposed for PdII precatalysts. This work provides a clear path toward engaging myriad oxygen-based electrophiles in Pd-catalyzed cross-coupling.  相似文献   

13.
The title compound, [Cu(C7H3O6S)2(C10H9N3)2][CuI(C10H9N3)2]2·2H2O, consists of anionic CuII moieties, cationic CuI species and uncoordinated water mol­ecules. The anionic dimeric unit consists of one crystallographically independent fully deprotonated 5‐sulfosalicylate (2‐oxido‐5‐sulfonatobenzoate) anion, a di‐2‐pyridylamine group and a CuII atom. Each CuII atom is five‐coordinate within a square‐pyramidal geometry. The anion lies on a special position of site symmetry. In the cationic monomer, the CuI atom adopts tetra­hedral geometry. The cations and anions are connected by O—H·O and N—H·O hydrogen bonds.  相似文献   

14.
Cobalt complexes are extensively studied as bioinspired models for non-heme oxygenases as they facilitate both the stabilization and characterization of metal-oxygen intermediates. As an analog to the well-known Co(cyclam) complex Co{N4} (cyclam=1,4,8,11-tetraazacyclotetradecane), the CoII complex Co{i-N4} with the isomeric isocyclam ligand (isocyclam=1,4,7,11-tetraazacyclotetradecane) was synthesized and characterized. Despite the identical N4 donor set of both complexes, Co{i-N4} enables the 2e/2H+ reduction of O2 with a lower overpotential (ηeff of 385 mV vs. 540 mV for Co{N4} ), albeit with a diminished turnover frequency. Characterization of the intermediates formed upon O2 activation of Co{i-N4} reveals a structurally identified stable μ-peroxo CoIII dimer as the main product. A superoxo CoIII species is also formed as a minor product, as indicated by EPR spectroscopy. In further reactivity studies, the electrophilicity of these in situ generated Co−O2 species was demonstrated by the oxidation of the O−H bond of TEMPO−H (2,2,6,6-tetramethylpiperidin-1-ol) via a H atom abstraction process. Unlike the known Co(cyclam), Co{i-N4} can be employed in oxygen atom transfer reactions oxidizing triphenylphosphine to the corresponding phosphine oxide highlighting the impact of geometrical modifications of the ligand while preserving the ring size and donor atom set on the reactivity of biomimetic oxygen activating complexes.  相似文献   

15.
The saturated trihydride IrH33-P,O,P-[xant(PiPr2)2]} ( 1 ; xant(PiPr2)2=9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene) activates the B−H bond of two molecules of pinacolborane (HBpin) to give H2, the hydride-boryl derivatives IrH2(Bpin){κ3-P,O,P-[xant(PiPr2)2]} ( 2 ) and IrH(Bpin)23-P,O,P-[xant(PiPr2)2]} ( 3 ) in a sequential manner. Complex 3 activates a C−H bond of two molecules of benzene to form PhBpin and regenerates 2 and 1 , also in a sequential manner. Thus, complexes 1 , 2 , and 3 define two cycles for the catalytic direct C−H borylation of arenes with HBpin, which have dihydride 2 as a common intermediate. C−H bond activation of the arenes is the rate-determining step of both cycles, as the C−H oxidative addition to 3 is faster than to 2 . The results from a kinetic study of the reactions of 1 and 2 with HBpin support a cooperative function of the hydride ligands in the B−H bond activation. The addition of the boron atom of the borane to a hydride facilitates the coordination of the B−H bond through the formation of κ1- and κ2-dihydrideborate intermediates.  相似文献   

16.
Coordination polymers (CPs) built by coordination bonds between metal ions/clusters and multidentate organic ligands exhibit fascinating structural topologies and potential applications as functional solid materials. The title coordination polymer, poly[diaquabis(μ4‐biphenyl‐3,4′,5‐tricarboxylato‐κ4O3:O3′:O4′:O5)tris[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene‐κ2N3:N3′]dicopper(II)dicopper(I)], [CuII2CuI2(C15H7O6)2(C12H10N4)3(H2O)2]n, was crystallized from a mixture of biphenyl‐3,4′,5‐tricarboxylic acid (H3bpt), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and copper(II) chloride in a water–CH3CN mixture under solvothermal reaction conditions. The asymmetric unit consists of two crystallographically independent Cu atoms, one of which is CuII, while the other has been reduced to the CuI ion. The CuII centre is pentacoordinated by three O atoms from three bpt3− ligands, one N atom from a 1,4‐bib ligand and one O atom from a coordinated water molecule, and the coordination geometry can be described as distorted trigonal bipyramidal. The CuI atom exhibits a T‐shaped geometry (CuN2O) coordinated by one O atom from a bpt3− ligand and two N atoms from two 1,4‐bib ligands. The CuII atoms are extended by bpt3− and 1,4‐bib linkers to generate a two‐dimensional network, while the CuI atoms are linked by 1,4‐bib ligands, forming one‐dimensional chains along the [20] direction. In addition, the completely deprotonated μ4‐η1111 bpt3− ligands bridge one CuI and three CuII cations along the a (or [100]) direction to form a three‐dimensional framework with a (103)2(10)2(42.6.102.12)2(42.6.82.10)2(8) topology via a 2,2,3,4,4‐connected net. An investigation of the magnetic properties indicated a very weak ferromagnetic behaviour.  相似文献   

17.
The formylglycine-generating enzyme (FGE) is a unique copper protein that catalyzes oxygen-dependent C−H activation. We describe 1.66 Å- and 1.28 Å-resolution crystal structures of FGE from Thermomonospora curvata in complex with either AgI or CdII providing definitive evidence for a high-affinity metal-binding site in this enzyme. The structures reveal a bis-cysteine linear coordination of the monovalent metal, and tetrahedral coordination of the bivalent metal. Similar coordination changes may occur in the active enzyme as a result of CuI/II redox cycling. Complexation of copper atoms by two cysteine residues is common among copper-trafficking proteins, but is unprecedented for redox-active copper enzymes or synthetic copper catalysts.  相似文献   

18.
The proton‐induced electron‐transfer reaction of a CuII μ‐thiolate complex to a CuI‐containing species has been investigated, both experimentally and computationally. The CuII μ‐thiolate complex [CuII2( LMeS )2]2+ is isolated with the new pyridyl‐containing ligand LMeSSLMe , which can form both CuII thiolate and CuI disulfide complexes, depending on the solvent. Both the CuII and the CuI complexes show reactivity upon addition of protons. The multivalent tetranuclear complex [CuI2CuII2( LS )2(CH3CN)6]4+ crystallizes after addition of two equivalents of strong acid to a solution containing the μ‐thiolate complex [CuII2( LS )2]2+ and is further analyzed in solution. This study shows that, upon addition of protons to the CuII thiolate compound, the ligand dissociates from the copper centers, in contrast to an earlier report describing redox isomerization to a CuI disulfide species that is protonated at the pyridyl moieties. Computational studies of the protonated CuII μ‐thiolate and CuI disulfide species with LSSL show that already upon addition of two equivalents of protons, ligand dissociation forming [CuI(CH3CN)4]+ and protonated ligand is energetically favored over conversion to a protonated CuI disulfide complex.  相似文献   

19.
The utilization of a single-atom catalyst to break C−C bonds merges the merits of homogeneous and heterogeneous catalysis and presents an intriguing pathway for obtaining high-value-added products. Herein, a mild, selective, and sustainable oxidative cleavage of alkene to form oxime ether or nitrile was achieved by using atomically dispersed cobalt catalyst and hydroxylamine. Diversified substrate patterns, including symmetrical and unsymmetrical alkenes, di- and tri-substituted alkenes, and late-stage functionalization of complex alkenes were demonstrated. The reaction was successfully scaled up and demonstrated good performance in recycling experiments. The hot filtration test, catalyst poisoning and radical scavenger experiment, time kinetics, and studies on the reaction intermediate collectively pointed to a radical mechanism with cobalt/acid/O2 promoted C−C bond cleavage as the key step.  相似文献   

20.
The hybrid bidentate 1-(2-pyridyl)benzotriazole (pyb) ligand was introduced into 3d transition metal catalysis. Specifically, [CuII(OTf)2(pyb)2] ⋅ 2 CH3CN ( 1 ) enables the synthesis of a wide range of propargylamines by the A3 coupling reaction at room temperature in the absence of additives. Experimental and high-level theoretical calculations suggest that the bridging N atom of the ligand imposes exclusive trans coordination at Cu and allows ligand rotation, while the N atom of the pyridine group modulates charge distribution and flux, and thus orchestrates structural and electronic precatalyst control permitting alkyne binding with simultaneous activation of the C−H bond via a transient CuI species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号