首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sodium-ion batteries(SIBs) have gained more scientists’ interest, owing to some facts such as the natural abundance of Na, the similarities of physicochemical characteristics between Li and Na. The irreversible Na+ions consumption during the first cycle of charge/discharge process(due to the formation of the solid electrolyte interface(SEI) on the electrode surface and other irreversible reactions) is the factor that determines high performance SIBs and largely reduces the capacity of the full c...  相似文献   

2.
《中国化学快报》2023,34(1):107443
Due to the abundant sodium reserves and high safety, sodium ion batteries (SIBs) are foreseen a promising future. While, hard carbon materials are very suitable for the anode of SIBs owing to their structure and cost advantages. However, the unsatisfactory initial coulombic efficiency (ICE) is one of the crucial blemishes of hard carbon materials and the slow sodium storage kinetics also hinders their wide application. Herein, with spherical nano SiO2 as pore-forming agent, gelatin and polytetrafluoroethylene as carbon sources, a multi-porous carbon (MPC) material can be easily obtained via a co-pyrolysis method, by which carbonization and template removal can be achieved synchronously without the assistance of strong acids or strong bases. As a result, the MPC anode exhibited remarkable ICE of 83% and a high rate capability (208 mAh/g at 5 A/g) when used in sodium-ion half cells. Additionally, coupling with Na3V2(PO4)3 as the cathode to assemble full cells, the as-fabricated MPC//NVP full cell delivered a good rate capability (146 mAh/g at 5 A/g) as well, implying a good application prospect the MPC anode has  相似文献   

3.
Transition metal selenides attract significant attention as advanced anode materials for sodium-ion batteries(SIBs) in recent years due to their appropriate working potential and high theoretic capacity. However, the poor structural stability and rate capability limit their further practical applications. Herein,zeolite imidazole framework-8/zeolite imidazole framework-67 is used as a template to prepare Co0.85Se and Zn Se nanoparticles embed in N-doped carbon matrix successfully, and...  相似文献   

4.
Demands for large-scale energy storage systems have driven the development of layered transition-metal oxide cathodes for room-temperature rechargeable sodium ion batteries (SIBs). Now, an abnormal layered-tunnel heterostructure Na0.44Co0.1Mn0.9O2 cathode material induced by chemical element substitution is reported. By virtue of beneficial synergistic effects, this layered-tunnel electrode shows outstanding electrochemical performance in sodium half-cell system and excellent compatibility with hard carbon anode in sodium full-cell system. The underlying formation process, charge compensation mechanism, phase transition, and sodium-ion storage electrochemistry are clearly articulated and confirmed through combined analyses of in situ high-energy X-ray diffraction and ex situ X-ray absorption spectroscopy as well as operando X-ray diffraction. This crystal structure engineering regulation strategy offers a future outlook into advanced cathode materials for SIBs.  相似文献   

5.
Metal selenides are promising anodes for sodium-ion batteries (SIBs) due to the high theoretical capacity through conversion reaction mechanism. However, developing metal selenides with superior electrochemical sodium-ion storage performance is still a great challenge. In this work, a novel composite material of free-standing NiSe2 nanoparticles encapsulated in N-doped TiN/carbon composite nanofibers with carbon nanotubes (CNTs) in-situ grown on the surface (NiSe2@N-TCF/CNTs) is prepared by electrospinning and pyrolysis technique. In this composite materials, NiSe2 nanoparticles on the surface of carbon nanofibers were encapsulated into CNTs, thus avoiding aggregation. The in-situ grown CNTs not only improve the conductivity but also act as a buffer to accommodate the volume expansion. TiN inside the nanofibers further enhances the conductivity and structural stability of carbon-based nanofibers. When directly used as anode for SIBs, the NiSe2@N-TCF/CNT electrode delivered a reversible capacity of 392.1 mAh/g after 1000 cycles and still maintained 334.4 mAh/g even at a high rate of 2 A/g. The excellent sodium-ion storage performance can be attributed to the fast Na+ diffusion and transfer rate and the pseudocapacitance dominated charge storage mechanism, as is evidenced by kinetic analysis. The work provides a novel approach to the fabrication of high-performance anode materials for other batteries.  相似文献   

6.
钠离子电池有望取代锂离子电池实现大规模储能应用。然而,储钠负极材料具有较低的初始库伦效率,制约了高比能钠离子电池的开发。预钠化技术被认为是补偿负极活性钠损失、提升电池能量密度的最直接有效的方法,对于钠离子电池的商业化应用具有重要意义。本文全面总结近年来预钠化技术的最新研究进展,包括短接法预钠化、电化学预钠化、钠金属物理预钠化、化学预钠化和正极补钠添加剂等,并从反应原理、安全性、可操作性、处理效率和可放大性等角度分析讨论现有各技术方案的优势及面临的挑战;着重介绍化学预钠化和正极补钠添加剂,这两类最具应用前景的预钠化技术的最新成果,进而从实用化角度深入探讨仍待解决的科学问题和技术难点。本文可为预钠化技术的进一步优化和高比能钠离子电池的开发提供思路。  相似文献   

7.
Cation migration often occurs in layered oxide cathodes of lithium-ion batteries due to the similar ion radius of Li and transition metals (TMs). Although Na and TM show a big difference of ion radius, TMs in layered cathodes of sodium-ion batteries (SIBs) can still migrate to Na layer, leading to serious electrochemical degeneration. To elucidate the origin of TM migration in layered SIB cathodes, we choose NaCrO2, a typical layered cathode suffering from serious TM migration, as a model material and find that the TM migration is derived from the random desodiation and subsequent formation of Na-free layer at high charge potential. A Ru/Ti co-doping strategy is developed to address the issue, where the doped active Ru is first oxidized to create a selective desodiation and the doped inactive Ti can function as a pillar to avoid complete desodiation in Ru-contained TM layers, leading to the suppression of the Na-free layer formation and subsequent enhanced electrochemical performance.  相似文献   

8.
Demands for large‐scale energy storage systems have driven the development of layered transition‐metal oxide cathodes for room‐temperature rechargeable sodium ion batteries (SIBs). Now, an abnormal layered‐tunnel heterostructure Na0.44Co0.1Mn0.9O2 cathode material induced by chemical element substitution is reported. By virtue of beneficial synergistic effects, this layered‐tunnel electrode shows outstanding electrochemical performance in sodium half‐cell system and excellent compatibility with hard carbon anode in sodium full‐cell system. The underlying formation process, charge compensation mechanism, phase transition, and sodium‐ion storage electrochemistry are clearly articulated and confirmed through combined analyses of in situ high‐energy X‐ray diffraction and ex situ X‐ray absorption spectroscopy as well as operando X‐ray diffraction. This crystal structure engineering regulation strategy offers a future outlook into advanced cathode materials for SIBs.  相似文献   

9.
Hard carbon (HC) is a promising anode material for sodium-ion batteries, yet still suffers from low initial Coulombic efficiency (ICE) and unstable solid electrolyte interphase (SEI). Herein, sodium diphenyl ketone (Na-DK) is applied to realize dual-function presodiation for HC anodes. It compensates the irreversible Na uptake at the oxygen-containing functional groups and reacts with carbon defects of five/seven-membered rings for quasi-metallic sodium in HC. The as-formed sodium induces robust NaF-rich SEI on HC in 1.0 M NaPF6 in diglyme, favoring the interfacial reaction kinetics and stable Na+ insertion and extraction. This renders the presodiated HC (pHC) with high ICE of ≈100 % and capacity retention of 82.4 % after 6800 cycles. It is demonstrated to couple with Na3V2(PO4)3 cathodes in full cells to show high capacity retention of ≈100 % after 700 cycles. This work provides in-depth understanding of chemical presodiation and a new strategy for highly stable sodium-ion batteries.  相似文献   

10.
Molybdenum disulfide (MoS2) is a promising candidate as a high‐performing anode material for sodium‐ion batteries (SIBs) due to its large interlayer spacing. However, it suffers from continued capacity fading. This problem could be overcome by hybridizing MoS2 with nanostructured carbon‐based materials, but it is quite challenging. Herein, we demonstrate a single‐step strategy for the preparation of MoS2 coupled with ordered mesoporous carbon nitride using a nanotemplating approach which involves the pyrolysis of phosphomolybdic acid hydrate (PMA), dithiooxamide (DTO) and 5‐amino‐1H‐tetrazole (5‐ATTZ) together in the porous channels of 3D mesoporous silica template. The sulfidation to MoS2, polymerization to carbon nitride (CN) and their hybridization occur simultaneously within a mesoporous silica template during a calcination process. The CN/MoS2 hybrid prepared by this unique approach is highly pure and exhibits good crystallinity as well as delivers excellent performance for SIBs with specific capacities of 605 and 431 mAhg?1 at current densities of 100 and 1000 mAg?1, respectively, for SIBs.  相似文献   

11.
We report the synthesis and anode application for sodium‐ion batteries (SIBs) of WS2 nanowires (WS2 NWs). WS2 NWs with very thin diameter of ≈25 nm and expanded interlayer spacing of 0.83 nm were prepared by using a facile solvothermal method followed by a heat treatment. The as‐prepared WS2 NWs were evaluated as anode materials of SIBs in two potential windows of 0.01–2.5 V and 0.5–3 V. WS2 NWs displayed a remarkable capacity (605.3 mA h g?1 at 100 mA g?1) but with irreversible conversion reaction in the potential window of 0.01–2.5 V. In comparison, WS2 NWs showed a reversible intercalation mechanism in the potential window of 0.5–3 V, in which the nanowire‐framework is well maintained. In the latter case, the interlayers of WS2 are gradually expanded and exfoliated during repeated charge–discharge cycling. This not only provides more active sites and open channels for the intercalation of Na+ but also facilitates the electronic and ionic diffusion. Therefore, WS2 NWs exhibited an ultra‐long cycle life with high capacity and rate capability in the potential window of 0.5–3 V. This study shows that WS2 NWs are promising as the anode materials of room‐temperature SIBs.  相似文献   

12.
With a theoretical capacity of 847 mAh g−1, Sn has emerged as promising anode material for sodium-ion batteries (SIBs). However, enormous volume expansion and agglomeration of nano Sn lead to low Coulombic efficiency and poor cycling stability. Herein, an intermetallic FeSn2 layer is designed via thermal reduction of polymer-Fe2O3 coated hollow SnO2 spheres to construct a yolk-shell structured Sn/FeSn2@C. The FeSn2 layer can relieve internal stress, avoid the agglomeration of Sn to accelerate the Na+ transport, and enable fast electronic conduction, which endows quick electrochemical dynamics and long-term stability. As a result, the Sn/FeSn2@C anode exhibits high initial Coulombic efficiency (ICE=93.8 %) and a high reversible capacity of 409 mAh g−1 at 1 A g−1 after 1500 cycles, corresponding to an 80 % capacity retention. In addition, NVP//Sn/FeSn2@C sodium-ion full cell shows outstanding cycle stability (capacity retaining rate of 89.7 % after 200 cycles at 1 C).  相似文献   

13.
ZnSe, as a promising electrode material for sodium storage, has a high theoretical capacity, low cost, and excellent physicochemical properties. The poor reaction kinetics and huge volume variation of ZnSe hinder its practical applications. Therefore, in this study, ZnSe electrode materials embedded in carbon nanofibers (ZnSe@NC@NCNFs) were synthesized through electrospinning and selenization using a Zn-based metal-organic framework (Zn-MOF) precursor. During the calcination process, the MOF-derived porous N-doped carbon layer wraps the ZnSe nanoparticles, and the one-dimensional (1D) carbon nanofiber forms a second N-doped carbon protective layer. The interwoven nanofibers can be severed as a freestanding electrode for sodium storage without conductive and binder agents. In situ X-ray diffraction (XRD) demonstrates the formation of irreversible NaZn13 during the initial discharge process, which can act as sodiophilic sites and buffering matrices for subsequent Na+ insertion/extraction. The ZnSe@NC@NCNFs exhibit significant electrochemical performance for sodium storage with high reversible capacity and desired rate performance.  相似文献   

14.
Room‐temperature sodium‐ion batteries (SIBs) have shown great promise in grid‐scale energy storage, portable electronics, and electric vehicles because of the abundance of low‐cost sodium. Sodium‐based layered oxides with a P2‐type layered framework have been considered as one of the most promising cathode materials for SIBs. However, they suffer from the undesired P2–O2 phase transition, which leads to rapid capacity decay and limited reversible capacities. Herein, we show that this problem can be significantly mitigated by substituting some of the nickel ions with magnesium to obtain Na0.67Mn0.67Ni0.33?xMgxO2 (0≤x≤0.33). Both the reversible capacity and the capacity retention of the P2‐type cathode material were remarkably improved as the P2–O2 phase transition was thus suppressed during cycling. This strategy might also be applicable to the modulation of the physical and chemical properties of layered oxides and provides new insight into the rational design of high‐capacity and highly stable cathode materials for SIBs.  相似文献   

15.
Sodium‐ion batteries (SIBs) based on flexible electrode materials are being investigated recently for improving sluggish kinetics and developing energy density. Transition metal selenides present excellent conductivity and high capacity; nevertheless, their low conductivity and serious volume expansion raise challenging issues of inferior lifespan and capacity fading. Herein, an in‐situ construction method through carbonization and selenide synergistic effect is skillfully designed to synthesize a flexible electrode of bone‐like CoSe2 nano‐thorn coated on porous carbon cloth. The designed flexible CoSe2 electrode with stable structural feature displays enhanced Na‐ion storage capabilities with good rate performance and outstanding cycling stability. As expected, the designed SIBs with flexible BL?CoSe2/PCC electrode display excellent reversible capacity with 360.7 mAh g?1 after 180 cycles at a current density of 0.1 A g?1.  相似文献   

16.
《中国化学》2018,36(9):866-874
At the forefront of energy storage field, developing sodium ion batteries (SIBs) has drew a wide concern due to relatively low cost and abundant resource, comparing with lithium ion batteries (LIBs). Serious volume expansion constraints the electrochemical performance of the conversion/alloying materials, despite of their high reversible capacities or theoretical capacities. Here, from the perspective of structural designs, we systematically study four types of routes to accommodate volume expansion. Delicate and peculiar nanostructures based on nanocrystallization engineering are widely focused on, covering nanosheet assembly and nanoarray construction. Robust materials such as carbon‐based materials can be utilized as the buffer matrix, mitigating the mechanical stress during the charge/discharge process. Besides, recent studies have demonstrated void space reservation in nanostructures was also beneficial for adapting to volume changes. Moreover, for conversion materials, numerous works have confirmed the advantageous influence of interlayer spacing regulation. We also explained the superiority and challenges for further giving scope to structural designs. Sketching out the future studies in SIBs, in situ characterizations are supposed to be highlighted, as well as in‐depth researches on the stress evolution caused by volume expansion.  相似文献   

17.
Designing and synthesizing highly stable anode materials with high capacity is critical for the practical application of sodium ion batteries (SIBs), however, to date, this remains an insurmountable barrier. The introduction of hierarchical architectures and carbon supports is proving an effective strategy for addressing these challenges. Thus, we have fabricated a hierarchical CoSe2@nitrogen-doped carbon (CoSe2@NC) microcube composite using the Prussian blue analogue Co3[Co(CN)6]2 as template. The rational combination of the unique hierarchical construction from one to three dimensions and a nitrogen-doped carbon skeleton facilitates sodium ion and electron transport as well as stabilizing the host structure during repeated discharge/charge processes, which contributes to its excellent sodium storage capability. As expected, the as-prepared CoSe2@NC composite delivered remarkable reversible capacity and ultralong cycling lifespan even at a high rate of 2.0 A g−1 (384.3 mA h g−1 after1800 loops) when serving as the anode material for SIBs. This work shows the great potential of the CoSe2-based anode for practical application in SIBs, and the original strategy may be extended to other anode materials.  相似文献   

18.
As a promising positive electrode material for sodium‐ion batteries (SIBs), layered sodium oxides have attracted considerable attention in recent years. In this work, stoichiometric P2‐phase NaCo0.5Mn0.5O2 was prepared through the conventional solid‐state reaction, and its structural and physical properties were studied in terms of XRD, XPS, and magnetic susceptibility. Furthermore, the P2‐NaCo0.5Mn0.5O2 electrode delivered a discharge capacity of 124.3 mA h g?1 and almost 100 % initial coulombic efficiency over the potential window of 1.5–4.15 V. It also showed good cycle stability, with a reversible capacity and capacity retention reaching approximately 85 mA h g?1 and 99 %, respectively, at the 5 C rate after 100 cycles. Additionally, cyclic voltammetry and ex situ XRD were employed to explain the electrochemical behavior at the different electrochemical stages. Owing to the applicable performances, P2‐NaCo0.5Mn0.5O2 can be considered as a potential positive electrode material for SIBs.  相似文献   

19.
Sodium/potassium-ion batteries (SIBs/PIBs) arouse intensive interest on account of the natural abundance of sodium/potassium resources, the competitive cost and appropriate redox potential. Nevertheless, the huge challenge for SIBs/PIBs lies in the scarcity of an anode material with high capacity and stable structure, which are capable of accommodating large-size ions during cycling. Furthermore, using sustainable natural biomass to fabricate electrodes for energy storage applications is a hot topic. Herein, an ultra-small few-layer nanostructured MoSe2 embedded on N, P co-doped bio-carbon is reported, which is synthesized by using chlorella as the adsorbent and precursor. As a consequence, the MoSe2/NP-C-2 composite represents exceedingly impressive electrochemical performance for both sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). It displays a promising reversible capacity (523 mAh g−1 at 100 mA g−1 after 100 cycles) and impressive long-term cycling performance (192 mAh g−1 at 5 A g−1 even after 1000 cycles) in SIBs, which are some of the best properties of MoSe2-based anode materials for SIBs to date. To further probe the great potential applications, full SIBs pairing the MoSe2/NP-C-2 composite anode with a Na3V2(PO4)3 cathode also exhibits a satisfactory capacity of 215 mAh g−1 at 500 mA g−1 after 100 cycles. Moreover, it also delivers a decent reversible capacity of 131 mAh g−1 at 1 A g−1 even after 250 cycles for PIBs.  相似文献   

20.
Sodium-ion batteries(SIBs) are promising alternatives to lithium-ion batteries(LIBs) for large-scale energy storage considering the abundance and low cost of Na-containing resources. However, the energy density of SIBs has been limited by the typically low specific capacities of traditional intercalation-based cathodes. Metal fluorides, in contrast, can deliver much higher capacities based on multi-electron conversion reactions. Among metal fluorides, CuF2 presents a theoretical speci...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号