首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Thermochimica Acta》1987,122(2):289-294
The standard enthalpy of formation of potassium metasilicate (K2SiO3), determined by hydrofluoric acid solution calorimetry, was found to be ΔHof,298 = −363.866±0.421 kcal mol−1 (−1522.415±1.762 kj mol−1). The standard enthalpy of formation from the oxides was found to beΔHo298 = −64.786±0.559 kcal mol−1 (−271.065±2.339 kJ mol−1).These experimentally determined data were combined with data from the literature to calculate the Gibbs energies of formation and equilibrium constants of formation over the temperature range of the literature data. The standard enthalpies of formation and Gibbs energies of formation are given as functions of temperature. The standard Gibbs energy of formation is ΔGf,298.150 = −341.705 kcal mol−1 (−1429.694 kJ mol−1).  相似文献   

3.
The electrochemical CO2 reduction reaction (CO2RR) to give C1 (formate and CO) products is one of the most techno-economically achievable strategies for alleviating CO2 emissions. Now, it is demonstrated that the SnOx shell in Sn2.7Cu catalyst with a hierarchical Sn-Cu core can be reconstructed in situ under cathodic potentials of CO2RR. The resulting Sn2.7Cu catalyst achieves a high current density of 406.7±14.4 mA cm−2 with C1 Faradaic efficiency of 98.0±0.9 % at −0.70 V vs. RHE, and remains stable at 243.1±19.2 mA cm−2 with a C1 Faradaic efficiency of 99.0±0.5 % for 40 h at −0.55 V vs. RHE. DFT calculations indicate that the reconstructed Sn/SnOx interface facilitates formic acid production by optimizing binding of the reaction intermediate HCOO* while promotes Faradaic efficiency of C1 products by suppressing the competitive hydrogen evolution reaction, resulting in high Faradaic efficiency, current density, and stability of CO2RR at low overpotentials.  相似文献   

4.
Oxide-derived Cu (OD−Cu) featured with surface located sub-20 nm nanoparticles (NPs) created via surface structure reconstruction was developed for electrochemical CO2 reduction (ECO2RR). With surface adsorbed hydroxyls (OHad) identified during ECO2RR, it is realized that OHad, sterically confined and adsorbed at OD−Cu by surface located sub-20 nm NPs, should be determinative to the multi-carbon (C2) product selectivity. In situ spectral investigations and theoretical calculations reveal that OHad favors the adsorption of low-frequency *CO with weak C≡O bonds and strengthens the *CO binding at OD−Cu surface, promoting *CO dimerization and then selective C2 production. However, excessive OHad would inhibit selective C2 production by occupying active sites and facilitating competitive H2 evolution. In a flow cell, stable C2 production with high selectivity of ∼60 % at −200 mA cm−2 could be achieved over OD−Cu, with adsorption of OHad well steered in the fast flowing electrolyte.  相似文献   

5.
Kinetic and thermodynamic investigations were performed for a mixed aqueous-organic, 1:1 (v/v) water–1,4-dioxane medium, which was found to be an efficient solvent for the interaction of a neutral dichlorotris(triphenylphosphine) ruthenium(II), RuCl2(PPh3)3 complex with carbon monoxide at atmospheric pressure. During the interaction, RuCl2(PPh3)3 dissociates to a neutral complex dichlorobis(triphenylphosphine) ruthenium(II), RuCl2(PPh3)2, by losing a coordinated PPh3 ligand and RuCl2(PPh3)2 coordinates with CO to form an in situ carbonyl complex RuCl2(CO)(PPh3)2. The in situ formed carbonyl complex RuCl2(CO)(PPh3)2 was thoroughly characterized by equilibrium, spectrophotometric, IR, and electrochemical techniques. Under equilibrium conditions, the rate and dissociation constants for the dissociation of PPh3 from RuCl2(PPh3)3 were found to be favorable for the formation of the carbonyl complex RuCl2(CO)(PPh3)2. The rates of complexation for the formation of RuCl2(CO)(PPh3)2 were found to follow an overall second-order kinetics being first order in terms of the concentrations of both carbon monoxide and RuCl2(PPh3)2. The determined activation parameters corresponding to the rate constant (ΔH# = 35.9 ± 2.5 kJ mol−1 and ΔS# = −122 ± 6 J K−1 mol−1) and thermodynamic parameters corresponding to the formation constant (ΔH° = −33.5 ± 4.5 kJ mol−1, ΔS° = −25 ± 8 J K−1 mol−1, and ΔG° = −25.7 ± 2.0 kJ mol−1) were found to be highly favorable for the formation of the complex RuCl2(CO)(PPh3)2. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 359–369, 2008  相似文献   

6.
Microcalorimetic measurements at 520–550 K of the heats of thermal decomposition of Fe2Ru(CO)12, FeRu2(CO)12 and Ru3(CO)12 lead to values of the standard enthalphy of formation (ΔHof, c/kJ mol-1) as follows: Fe2Ru(CO)12  (1820 ± 14); FeRu2(CO)12  (1891 ± 16); Ru3(CO)12  (1903 ± 18). Enthalpies of sublimation are estimated and the ironruthenium bond enthalpy contribution is derived as E(FeRu)  (95 ± 20) kJ mol-1.  相似文献   

7.
Variable temperature FT–IR spectroscopy (in the range of 298–380 K) is used to study the thermodynamics of formation of Ca2+???CO carbonyl species upon CO adsorption on the faujasite‐type zeolite Ca–Y, and also the (temperature‐dependent) isomerization equilibrium between carbonyl and isocarbonyl (Ca2+???OC) species. The standard enthalpy and entropy changes involved in formation of the monocarbonyl species resulted to be ΔH0=?50.3 (±0.5) kJ mol?1 and ΔS0=?186 (±5) J mol?1 K?1, respectively. Isomerization of the (C‐bonded) Ca2+???CO carbonyl to yield the (O‐bonded) Ca2+???OC isocarbonyl involves an enthalpy change =+11.4 (±1.0) kJ mol?1. These results are compared with previously reported data for the CO/Sr–Y system; and also, a brief analysis of enthalpy–entropy correlation for CO adsorption on zeolites and metal oxides is given.  相似文献   

8.
Advancing the performance of the Cu-catalyzed electrochemical CO2 reduction reaction (CO2RR) is crucial for its practical applications. Still, the wettable pristine Cu surface often suffers from low exposure to CO2, reducing the Faradaic efficiencies (FEs) and current densities for multi-carbon (C2+) products. Recent studies have proposed that increasing surface availability for CO2 by cation-exchange ionomers can enhance the C2+ product formation rates. However, due to the rapid formation and consumption of *CO, such promotion in reaction kinetics can shorten the residence of *CO whose adsorption determines C2+ selectivity, and thus the resulting C2+ FEs remain low. Herein, we discover that the electro-kinetic retardation caused by the strong hydrophobicity of quaternary ammonium group-functionalized polynorbornene ionomers can greatly prolong the *CO residence on Cu. This unconventional electro-kinetic effect is demonstrated by the increased Tafel slopes and the decreased sensitivity of *CO coverage change to potentials. As a result, the strongly hydrophobic Cu electrodes exhibit C2+ Faradaic efficiencies of ≈90 % at a partial current density of 223 mA cm−2, more than twice of bare or hydrophilic Cu surfaces.  相似文献   

9.
We report a new strategy to prepare a composite catalyst for highly efficient electrochemical CO2 reduction reaction (CO2RR). The composite catalyst is made by anchoring Au nanoparticles on Cu nanowires via 4,4′‐bipyridine (bipy). The Au‐bipy‐Cu composite catalyzes the CO2RR in 0.1 m KHCO3 with a total Faradaic efficiency (FE) reaching 90.6 % at ?0.9 V to provide C‐products, among which CH3CHO (25 % FE) dominates the liquid product (HCOO?, CH3CHO, and CH3COO?) distribution (75 %). The enhanced CO2RR catalysis demonstrated by Au‐bipy‐Cu originates from its synergistic Au (CO2 to CO) and Cu (CO to C‐products) catalysis which is further promoted by bipy. The Au‐bipy‐Cu composite represents a new catalyst system for effective CO2RR conversion to C‐products.  相似文献   

10.
The photoconversion of 2′,3′‐dihydro‐6‐nitro‐1′,3′,3′‐trimethylspiro[2H‐1‐benzopyran‐2,2′‐indole] ( Sp ) to its open merocyanine form ( Mc ) in a series of aerated cycloalkanes (cyclopentane, cyclohexane, and trans‐ and cis‐decalin) and of the protonated merocyanine ( McH + ) to Sp in aqueous solution were studied by laser‐induced optoacoustic spectroscopy (LIOAS). The +(11±2) ml mol−1 expansion determined for the ring closure is due to deprotonation of McH + plus the reaction of the ejected proton with the monoanion of malonic acid (added to stabilize Mc ), an intrinsic expansion and a small electrostriction term. The energy difference between Sp and initial McH + is (282±110) kJ mol−1. An intrinsic contraction of −(47±15) ml mol−1 occurs upon ring opening, forming triplet 3Mc in the cycloalkanes, whereas no volume change was detected for the 3Mc to Mc relaxation. Electrostriction decreases the 3Mc energy, (165±18) kJ mol−1, to 135 kJ mol−1. The difference in the values of the ring‐opening ( Sp to Mc ) reaction enthalpy in cycloalkanes as derived from the temperature dependence of the Sp ⇌ Mc equilibrium, (29±8) kJ mol−1, and from the LIOAS data, −(9±25) kJ mol−1, is due to the formation of Mc‐Sp aggregates during steady‐state measurements. The Sp ‐sensitized singlet molecular oxygen, O2(1Δg), quantum yield (average ΦΔ=0.58±0.03) derived from the near‐IR emission of O2(1Δg), was taken as a measure of Mc production in the cycloalkanes. These solvents, albeit troublesome in their handling, provide an additional series for the determination of structural volume changes in nonaqueous media, besides the alkanes already used.  相似文献   

11.
《Thermochimica Acta》1987,112(2):141-149
Equilibria involving the molecules Ga2S(g), In2S(g), and InGaS(g), by the reaction Ga2S(g) + In2S(g) = 12InGaS(g) were investigated between 1060–1350 K by the Knudsen-effusion, mass-spectrometric method. The reaction enthalpy at 298 K was calculated to be 0±1 kJ mol−1. The enthalpy of formation of InGaS at 298 K and the enthalpy of atomization of InGaS at 298 K were calculated to be 80±18 kJ mol−1 and 710±18 kJ mol−1, respectively. The equilibrium constant and the enthalpy of reaction indicated that the three gaseous molecules have a bent triatomic structure in which S is a center atom and no bond between metals.  相似文献   

12.
胡蓉蓉  程易  丁宇龙  谢兰英  王德峥 《化学学报》2007,65(18):2001-2006
利用产物瞬时分析反应器中进行的单脉冲实验, 考察了393~493 K温度范围内CO在Ag掺杂的氧化锰八面体分子筛上的吸附行为. 实验表明: CO在催化剂表面发生化学吸附, 并与晶格氧反应生成CO2. 通过对该过程反应物及产物脉冲响应曲线的模拟, 得到了各基元反应的动力学参数. CO和CO2在该催化剂表面的脱附活化能分别为83和31 kJ/mol, CO与晶格氧的反应活化能为116 kJ/mol.  相似文献   

13.
The standard enthalpy of combustion of cyclohexylamine has been measured in an aneroid rotating-bomb calorimeter. The value ΔHoo(c-C6H11NH2, 1) = ?(4071.3 ± 1.3) kJ mol?1 yields the standard enthalpy of formation ΔHfo(c-C6H11NH2, 1) = ?(147.7 ± 1.3) kJ mol?1. The corresponding gas-phase standard enthalpy of formation for cyclohexylamine is ΔHfo(c-C6H11NH2, g) = ?(104.9 ± 1.3) kJ mol?1. The standard enthalpy of formation of cyclohexylamine hydrochloride, ΔHfo(c-C6H11NH2·HCl, c) = ?(408.2 ± 1.5) kJ mol?1, was derived by combining the measured enthalpy of solution of the salt in water, literature data, and the ΔHco measured in this study. Comment is made on the thermochemical bond enthalpy H(CN).  相似文献   

14.
From measurements of the heats of iodination of CH3Mn(CO)5 and CH3Re(CO)5 at elevated temperatures using the ‘drop’ microcalorimeter method, values were determined for the standard enthalpies of formation at 25° of the crystalline compounds: ΔHof[CH3Mn(CO)5, c] = ?189.0 ± 2 kcal mol?1 (?790.8 ± 8 kJ mol?1), ΔHof[Ch3Re(CO)5,c] = ?198.0 ± kcal mol?1 (?828.4 ± 8 kJ mo?1). In conjunction with available enthalpies of sublimation, and with literature values for the dissociation energies of MnMn and ReRe bonds in Mn2(CO)10 and Re2(CO)10, values are derived for the dissociation energies: D(CH3Mn(CO)5) = 27.9 ± 2.3 or 30.9 ± 2.3 kcal mol?1 and D(CH3Re(CO)5) = 53.2 ± 2.5 kcal mol?1. In general, irrespective of the value accepted for D(MM) in M2(CO)10, the present results require that, D(CH3Mn) = 12D(MnMn) + 18.5 kcal mol?1 and D(CH3Re) = 12D(ReRe) + 30.8 kcal mol?1.  相似文献   

15.
The electrochemical CO2 reduction reaction (CO2RR) to give C1 (formate and CO) products is one of the most techno‐economically achievable strategies for alleviating CO2 emissions. Now, it is demonstrated that the SnOx shell in Sn2.7Cu catalyst with a hierarchical Sn‐Cu core can be reconstructed in situ under cathodic potentials of CO2RR. The resulting Sn2.7Cu catalyst achieves a high current density of 406.7±14.4 mA cm?2 with C1 Faradaic efficiency of 98.0±0.9 % at ?0.70 V vs. RHE, and remains stable at 243.1±19.2 mA cm?2 with a C1 Faradaic efficiency of 99.0±0.5 % for 40 h at ?0.55 V vs. RHE. DFT calculations indicate that the reconstructed Sn/SnOx interface facilitates formic acid production by optimizing binding of the reaction intermediate HCOO* while promotes Faradaic efficiency of C1 products by suppressing the competitive hydrogen evolution reaction, resulting in high Faradaic efficiency, current density, and stability of CO2RR at low overpotentials.  相似文献   

16.
Kinetic studies of reactions of the MoMo bonded complex (h5-C5H5)2Mo2(CO)6 in decalin show that it undergoes reversible homolytic fission and that the activation enthalpy required to break the MoMo bond is 135.9 ± 2.2 kJ mol?1.  相似文献   

17.
The standard enthalpy of combustion of crystalline silver pivalate, (CH3)3CC(O)OAg (AgPiv), was determined in an isoperibolic calorimeter with a self-sealing steel bomb, Δc H 0 (AgPiv, cr)= −2786.9±5.6 kJ mol−1. The value of standard enthalpy of formation was derived for crystalline state: Δf H 0(AgPiv,cr)= −466.9±5.6 kJ mol−1. Using the enthalpy of sublimation, measured earlier, the enthalpy of formation of gaseous dimer was obtained: Δf H 0(Ag2Piv2,g)= −787±14 kJ mol−1. The enthalpy of reaction (CH3)3CC(O)OAg(cr)=Ag(cr)+(CH3)3CC(O)O.(g) was estimated, Δr H 0=202 kJ mol−1.  相似文献   

18.
The gas-phase reactions of O . (H2O)n and OH(H2O)n, n=20–38, with nitrogen-containing atmospherically relevant molecules, namely NOx and HNO3, are studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and theoretically with the use of DFT calculations. Hydrated O . anions oxidize NO . and NO2 . to NO2 and NO3 through a strongly exothermic reaction with enthalpy of −263±47 kJ mol−1 and −286±42 kJ mol−1, indicating a covalent bond formation. Comparison of the rate coefficients with collision models shows that the reactions are kinetically slow with 3.3 and 6.5 % collision efficiency. Reactions between hydrated OH anions and nitric oxides were not observed in the present experiment and are most likely thermodynamically hindered. In contrast, both hydrated anions are reactive toward HNO3 through proton transfer from nitric acid, yielding hydrated NO3. Although HNO3 is efficiently picked-up by the water clusters, forming (HNO3)0–2(H2O)mNO3 clusters, the overall kinetics of nitrate formation are slow and correspond to an efficiency below 10 %. Combination of the measured reaction thermochemistry with literature values in thermochemical cycles yields ΔHf(O(aq.))=48±42 kJ mol−1 and ΔHf(NO2(aq.))=−125±63 kJ mol−1.  相似文献   

19.
Removing CO2 from crude syngas via physical adsorption is an effective method to yield eligible syngas. However, the bottleneck in trapping ppm-level CO2 and improving CO purity at higher working temperatures are major challenges. Here we report a thermoresponsive metal–organic framework ( 1 a-apz ), assembled by rigid Mg2(dobdc) ( 1 a ) and aminopyrazine (apz), which not only affords an ultra-high CO2 capacity (145.0/197.6 cm3 g−1 (0.01/0.1 bar) at 298 K) but also produces ultra-pure CO (purity ≥99.99 %) at a practical ambient temperature (TA). Several characterization results, including variable-temperature tests, in situ high-resolution synchrotron X-ray diffraction (HR-SXRD), and simulations, explicitly unravel that the excellent property is attributed to the induced-fit-identification in 1 a-apz that comprises self-adaption of apz, multiple binding sites, and complementary electrostatic potential (ESP). Breakthrough tests suggest that 1 a-apz can remove CO2 from 1/99 CO2/CO mixtures at practical 348 K, yielding 70.5 L kg−1 of CO with ultra-high purity of ≥99.99 %. The excellent separation performance is also revealed by separating crude syngas that contains quinary mixtures of H2/N2/CH4/CO/CO2 (46/18.3/2.4/32.3/1, v/v/v/v/v).  相似文献   

20.
Carbonylation of ethanol with CO2 as carbonyl source into value-added esters is of considerable significance and interest, while remains of great challenge due to the harsh conditions for activation of inert CO2 in that the harsh conditions result in undesired activation of α-C−H and even cleavage of C−C bond in ethanol to deteriorate the specific activation of O−H bond. Herein, we propose a photo-thermal cooperative strategy for carbonylation of ethanol with CO2, in which CO2 is activated to reactive CO via photo-catalysis with the assistance of *H from thermally-catalyzed dissociation of alcoholic O−H bond. To achieve this proposal, an interfacial site and oxygen vacancy both abundant SrTiCuO3-x supported Cu2O (Cu2O-SrTiCuO3-x) has been designed. A production of up to 320 μmol g−1 h−1 for ethyl formate with a selectivity of 85.6 % to targeted alcoholic O−H activation has been afforded in photo-thermal assisted gas-solid process under 3.29 W cm−1 of UV/Vis light irradiation (144 °C) and 0.2 MPa CO2. In the photo-driven activation of CO2 and following carbonylation, CO2 activation energy decreases to 12.6 kJ mol−1, and the cleavage of alcoholic α-C−H bond has been suppressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号