首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Composite membranes for nanofiltration were prepared by a polycondensation reaction between trimesoylchloride and different amines inside a dense layer of poly(ethylene oxide-b-amide). Use of amines containing ethylene glycol blocks resulted in membranes with best performance; hydrophilic membranes with a cut-off as low as 600 g mol−1 and a reasonable water permeability, around 31 h−1 m−2 bar−1 were produced.  相似文献   

2.
Efficient Mg2+/Li+ separation is crucial to combating the lithium shortage worldwide, yet current nanofiltration membranes suffer from low efficacy and/or poor scalability, because desirable properties of membranes are entangled and there is a trade-off. This work reports a “tagged-modification” approach to tackle the challenge. A mixture of 3-bromo-trimethylpropan-1-aminium bromide (E1) and 3-aminopropyltrimethylazanium (E2) was designed to modify polyethylenimine – trimesoyl chloride (PEI-TMC) membranes. E1 and E2 reacted with the PEI and TMC, respectively, and thus, the membrane properties (hydrophilicity, pore sizes, charge) were untangled and intensified simultaneously. The permeance (34.3 L m−2 h−1 bar−1) and Mg2+/Li+ selectivity (23.2) of the modified membranes are about 4 times and 2 times higher than the pristine membrane, and they remain stable in a 30-days test. The permeance is the highest among all analogous nanofiltration membranes. The tagged-modification method enables the preparation of large-area membranes and modules that produce high-purity lithium carbonate (Li2CO3) from simulated brine.  相似文献   

3.
Dithioterethiol (DTT) is a typical example of substances that contain sulfur with adverse effects on human health. Membranes-based cellulose acetate is used for the separation processes of thiols after the addition of ZnO and TiO2 nanoparticles. The measurement of permeability allows us to estimate the efficiency of membrane cleaning. The permeability increases from 8.82 L.h?1.m?2.bar?1 for CA membrane to 20.77 L.h?1.m?2.bar?1 for CA-TiO2 and 21.96 L.h?1.m?2.bar?1 for CA-ZnO membranes. For the permeability values of DTT, we noted that the CA-ZnO membrane has the highest permeability (50.66 L.h?1.m?2.bar?1). The CA-ZnO membrane changes from nanofiltration to ultrafiltration membrane. On the other hand, for the CA-TiO2 modified membrane, the permeability decreases to 6.00 L.h?1.m?2.bar?1. The CA-TiO2 membrane is in the category of reverse osmosis membranes. This variation is explained by the interaction between nanoparticles and DTT. The contact angles of the incorporated membranes decrease progressively with the addition of TiO2 or ZnO-NPs. The low contact angle with water means high hydrophilicity, indicated that the addition of TiO2 and ZnO improved the hydrophilicity of the membranes. The CA membrane had the highest contact angle with water of 92.64 ± 1.5°. After the addition of 0.1 g of TiO2 or ZnO, the contact angle of CA-TiO2 and CA-ZnO was reduced to 86.7 ± 0.2° and 70.51 ± 1.5°, respectively. Both TiO2 and ZnO caused strong hydrophilicity of membranes. From the elimination rates of DTT, it is concluded that there are optimal conditions of (1) Pressure P = 2 bars, (2) pH = 10 and (3) DTT concentration = 2 mM.  相似文献   

4.
A rapid and scalable synthesis of six new imine‐linked highly porous and crystalline COFs is presented that feature exceptionally high chemical stability in harsh environments including conc. H2SO4 (18 m ), conc. HCl (12 m ), and NaOH (9 m ). This is because of the presence of strong interlayer C?H???N hydrogen bonding among the individual layers, which provides significant steric hindrance and a hydrophobic environment around the imine (?C=N?) bonds, thus preventing their hydrolysis in such an abrasive environment. These COFs were further converted into porous, crystalline, self‐standing, and crack‐free COF membranes (COFMs) with extremely high chemical stability for their potential applications for sulfuric acid recovery. The as‐synthesized COFMs exhibit unprecedented permeance for acetonitrile (280 Lm?2 h?1 bar?1) and acetone (260 Lm?2 h?1 bar?1).  相似文献   

5.
Here, polyvinylidene fluoride (PVDF) membranes were fabricated via non-solvent induced phase separation (NIPS) using dopamine (DA) and polyethyleneimine (PEI) as the hydrophilic additives, which has a loose surface and somewhat improved hydrophilicity. Then nanofiltration (NF)-like thin-film composite forward osmosis (TFC FO) membrane with a loose polyamide (PA) active layer on the blend membrane was synthesized via the interfacial polymerization. The as-prepared NF-like TFC FO membrane exhibited a high water flux (Jw) of 29.98 L m−2 h−1 and a much low specific salt flux (Js/Jw) of 0.018 g/L, when 0.6 M NaCl was used as draw solution (DS). It had a superior rejection of malachite green (99.6% ± 0.1%) and a low rejection of NaCl (27.4% ± 4.2%), when filtrated malachite green/NaCl mixture solution in active layer-facing draw solution (AL-FS) mode. The results provide new insights on the design and preparation of FO membranes of selective separation for dyes from salty water.  相似文献   

6.
Two‐dimensional (2D) materials are promising candidates for advanced water purification membranes. A new kind of lamellar membrane is based on a stack of 2D MXene nanosheets. Starting from compact Ti3AlC2, delaminated nanosheets of the composition Ti3C2Tx with the functional groups T (O, OH, and/or F) can be produced by etching and ultrasonication and stapled on a porous support by vacuum filtration. The MXene membrane supported on anodic aluminum oxide (AAO) substrate shows excellent water permeance (more than 1000 L m−2 h−1 bar−1) and favorable rejection rate (over 90 %) for molecules with sizes larger than 2.5 nm. The water permeance through the MXene membrane is much higher than that of the most membranes with similar rejections. Long‐time operation also reveals the outstanding stability of the MXene membrane for water purification.  相似文献   

7.
Thin film composite (TFC) membranes were prepared from sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) as a top layer coated onto poly(phthalazinone ether sulfone ketone) (PPESK) ultrafiltration (UF) support membranes. The effects of different preparation conditions such as the SPPESK concentration, organic additives, solvent, degree of substitution (DS) of SPPEK and curing treatment temperature and time on the membrane performance were studied. The SPPESK concentration in the coating solution was the dominant factor for the rejection and permeation flux. The TFC membranes prepared from glycerol as an organic additive show better performance then those prepared from other additives. The rejection increased and the flux decreased with increasing curing treatment temperatures. The salt rejections of the TFC nanofiltration (NF) membranes increased in the order MgCl2 < MgSO4 < NaCl < Na2SO4. TFC membranes showed high water flux at low pressure. SPPESK composite membranes rejections for a 1000 mg L−1 Na2SO4 feed solution was 82%, and solution flux was 68 L m−2 h−1 at 0.25 MPa pressure.  相似文献   

8.
To separate small molecules from the solvent with high permeability and selectivity, the membrane process is thought to be highly effective with much lower energy consumption when compared to the traditional thermal‐based separation process. To achieve high solvent permeance, a sub‐10 nm thick polyamide nanofiltration membrane was synthesized through interfacial polymerization of ethidium bromide (EtBr) and trimesoyl chloride (TMC). Thanks to the extremely low solubility of the EtBr monomer in the organic phase, the polymerization process was strictly limited at the interface of the water and hexane, leading to an ultrathin polyamide membrane with a thickness down to sub‐10 nm. When used in nanofiltration, these ultrathin membranes display ultrafast water permeation of 40 liter per square meter per hour per bar (L m?2 h?1 bar?1), and a high Congo red rejection rate of 93 %. This work demonstrates a new route to synthesize ultrathin polyamide membranes by the traditional interfacial polymerization.  相似文献   

9.
《中国化学快报》2023,34(6):107931
As a high-flux operation mode of thin film composite-forward osmosis (TFC-FO) membrane, active layer facing draw solution (AL-DS) mode suffers from the severe membrane fouling tendency, which is not addressed well. Here, we introduced a photocatalyst (Anatase titanium dioxide, A-TiO2) onto the support layer of TFC-FO membrane via the bonding of polydopamine (PDA) and polytetrafluoroethylene (PTFE), and prepared two photocatalytic membranes, A-TiO2/PDA@TFC and A-TiO2/PTFE@TFC. Compared with the pristine TFC-FO membrane, both A-TiO2/PDA @TFC and A-TiO2/PTFE@TFC had an improved water permeability (10.5 L m−2h−1 and 9.5 L m−2 h−1, respectively) and reduced reverse NaCl flux salt (0.8 g m−2 h−1 and 0.7 g m−2 h−1, respectively) in the AL-DS mode using 1 mol/L NaCl as draw solution and pure water as feed solution. Moreover, in the 16 h fouling experiment using 200 ppm bovine serum albumin (BSA) solution as a representative pollutant, the flux decline rate of both photocatalytic membranes was dramatically alleviated from 39.7% and 21.7% in the darkness to 8.5% and 9.7% under UV irradiation, respectively, indicating a significant anti-fouling capacity of photocatalytic effect. In all, the presence of A-TiO2 endowed membrane with high permeability, high rejection efficiency and excellent anti-fouling capacity under UV spotlight. As bonding agent, PTFE provided the modified membrane with a high photocatalytic effect and high self-cleaning capacity, while PDA increased the membrane permeability and protected membrane against photocatalytic damage. This work provides a simple and feasible method to improve the anti-fouling capacity of TFC-FO membrane in AL-DS mode.  相似文献   

10.
Although having shown great promise for efficient water treatment, rational structural design and engineering of polycrystalline MOF membranes remain rarely investigated so far. In this study, we prepared well-intergrown MOF-801 membranes with tailorable structural deficiencies in the framework for application in dye rejection. Of particular note, we found that the addition of formic acid as modulator led to the formation of MOF-801 membrane with higher missing-linker number, which was beneficial for increasing water flux with little compromise in dye rejection rate. The MOF-801 membrane prepared in this work exhibited excellent dye rejection performance (CR rejection rate of 99.50 % and water flux of 31.69 L m−2 h−1 bar−1) as well as excellent long-term stability.  相似文献   

11.
Modification of poly(phthalazinone ether sulfone ketone) (PPESK) by sulfonation with concentrated or fuming sulfuric acid was carried out in order to prepare thermally stable polymers as membrane materials having increased hydrophilicity and potentially improved fouling-resistance. The sulfonated poly(phthalazinone ether sulfone ketone)s (SPPESK) were fabricated into ultrafiltration (UF) and nanofiltration (NF) asymmetric membranes. The effects of SPPESK concentration and the type and concentration of additives in the casting solution on membrane permeation flux and rejection were evaluated by using an orthogonal array experimental design in the separation of polyethyleneglycol (PEG12000 and PEG2000) and Clayton Yellow (CY, MW 695). One UF membrane formulation type had a 98% rejection rate for PEG12000 and a high pure water flux of 867 kg m−2 h−1. All the NF membranes made in the present study had rejections of ≥96%, and one had a high water flux of 160 kg m−2 h−1. Several of the NF membrane formulation types had ∼90% rejection for CY. When the membranes were operated at higher temperatures (80°C), the rejection rates declined slightly and pure water flux was increased more than two-fold. Rejection and flux values returned to previous values when the membranes were operated at room temperature again. Mono- and divalent salt rejections and fluxes were studied on an additional NF membrane set.  相似文献   

12.
Graphdiynes (GDYs), two-dimensional graphene-like carbon systems, are considered as potential advanced membrane material due to their unique physicochemical features. Nevertheless, the scale-up of integrated GDY membranes is technologically challenging, and most studies remain at the theoretical stage. Herein, we report a simple and efficient alkynylated surface-mediated strategy to prepare hydrogen-substituted graphdiyne (HsGDY) membranes on commercial alumina tubes. Surface alkynylation initiates an accelerated surface-confined coupling reaction in the presence of a copper catalyst and facilitates the nanoscale epitaxial lateral growth of HsGDY. A continuous and ultra-thin HsGDY membrane (∼100 nm) can be produced within 15 min. The resulting membranes exhibit outstanding molecular sieving together with excellent water permeances (ca. 1100 L m−2 h−1 MPa−1), and show a long-term durability in cross-flow nanofiltration, owing to the superhydrophilic surface and hydrophobic pore walls.  相似文献   

13.
《中国化学快报》2021,32(9):2882-2886
Zero-dimensional carbon dots have emerged as important nanofillers for the separation membrane due to their small specific size and rich surface functional groups. This study proposed a strategy based on hydrophobic carbon dots (HCDs) to regulate water channels for an efficient forward osmosis (FO) membrane. Thin-film composite (TFC) membranes with superior FO performance are fabricated by introducing HCDs as the nanofiller in the polyacrylonitrile support layer. The introduction of HCDs promotes the formation of the support layer with coherent finger-like hierarchical channels and micro-convex structure and an integrated polyamide active layer. Compared to the original membrane, TFC-FO membrane with 10 wt% HCDs exhibits high water flux (15.47 L m−2 h−1) and low reverse salt flux (2.9 g m−2 h−1) using 1 mol/L NaCl as the draw solution. This improved FO performance is attributed to the lower structural parameters of HCDs-induced water channels and alleviated internal concentration polarization. Thus, this paper provides a feasible strategy to design the membrane structure and boost FO performance.  相似文献   

14.
Two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanosheets show brilliant application potential in numerous fields. Herein, a membrane with artificial nanopores and self-supporting spacers was fabricated by assembly of 2D g-C3N4 nanosheets in a stack with elaborate structures. In water purification the g-C3N4 membrane shows a better separation performance than commercial membranes. The g-C3N4 membrane has a water permeance of 29 L m−2 h−1 bar−1 and a rejection rate of 87 % for 3 nm molecules with a membrane thickness of 160 nm. The artificial nanopores in the g-C3N4 nanosheets and the spacers between the partially exfoliated g-C3N4 nanosheets provide nanochannels for water transport while bigger molecules are retained. The self-supported nanochannels in the g-C3N4 membrane are very stable and rigid enough to resist environmental challenges, such as changes to pH and pressure conditions. Permeation experiments and molecular dynamics simulations indicate that a novel nanofluidics phenomenon takes place, whereby water transport through the g-C3N4 nanosheet membrane occurs with ultralow friction. The findings provide new understanding of fluidics in nanochannels and illuminate a fabrication method by which rigid nanochannels may be obtained for applications in complex or harsh environments.  相似文献   

15.
Nanofiltration (NF) membranes have been widely used for the treatment of electroplating, aerospace, textile, pharmaceutical, and other chemical industries. In this work, halloysite nanotubes (HNTs) were directly anchored on the surface of commercial nanofiltration (NF) membrane by dopamine modification following advantageous bio‐inspired methods. SEM and AFM images were used to characterize the HNTs decorated membrane surface in terms of surface morphology and roughness. Water contact angle (WCA) was employed in evidencing the incorporation of HNTs and dopamine in terms of hydrophilicity or hydrophobicity. Augmentation of HNTs was found to obviously enhance the hydrophilicity and surface roughness resulting in improved water permeability of membrane. More importantly, the rejection ratios of membrane also increased during the removal of heavy metal ions from wastewater. The permeability and Cu2+ rejection ratio of modified NF membrane were as high as 13.9 L·m?2·h?1·bar?1 and 74.3%, respectively. Incorporation of HNTs was also found to enhance the anti‐fouling property and stability of membrane as evident from long‐term performance tests. The relative concentration of HNTs and dopamine on membrane surface was optimized by investigating the trade‐off between water permeability and rejection ratio.  相似文献   

16.
Two‐dimensional (2D) graphitic carbon nitride (g‐C3N4) nanosheets show brilliant application potential in numerous fields. Herein, a membrane with artificial nanopores and self‐supporting spacers was fabricated by assembly of 2D g‐C3N4 nanosheets in a stack with elaborate structures. In water purification the g‐C3N4 membrane shows a better separation performance than commercial membranes. The g‐C3N4 membrane has a water permeance of 29 L m−2 h−1 bar−1 and a rejection rate of 87 % for 3 nm molecules with a membrane thickness of 160 nm. The artificial nanopores in the g‐C3N4 nanosheets and the spacers between the partially exfoliated g‐C3N4 nanosheets provide nanochannels for water transport while bigger molecules are retained. The self‐supported nanochannels in the g‐C3N4 membrane are very stable and rigid enough to resist environmental challenges, such as changes to pH and pressure conditions. Permeation experiments and molecular dynamics simulations indicate that a novel nanofluidics phenomenon takes place, whereby water transport through the g‐C3N4 nanosheet membrane occurs with ultralow friction. The findings provide new understanding of fluidics in nanochannels and illuminate a fabrication method by which rigid nanochannels may be obtained for applications in complex or harsh environments.  相似文献   

17.
g‐C3N4 membranes were modulated by intercalating molecules with SO3H and benzene moieties between layers. The intercalation molecules break up the tightly stacking structure of g‐C3N4 laminates successfully and accordingly the modified g‐C3N4 membranes give rise to two orders magnitude higher water permeances without sacrificing the separation efficiency. The sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO)/g‐C3N4 with a thickness of 350 nm presents an exceptionally high water permeance of 8867 L h?1 m?2 bar?1 and 100 % rejection towards methyl blue, while the original g‐C3N4 membrane with a thickness of 226 nm only exhibits a permeance of 60 L h?1 m?2 bar?1. Simultaneously, SO3H sites firmly anchor nitrogen with base functionality distributing onto g‐C3N4 through acid–base interactions. This enables the nanochannels of g‐C3N4 based membranes to be stabilized in acid, basic, and also high‐pressure environments for long periods.  相似文献   

18.
Vanadium flow battery (VFB) is one of the most reliable stationary electrochemical energy-storage technologies, and a membrane with high vanadium resistance and proton conductivity is essential for manufacturing high-performance VFBs. In this study, a two-dimensional (2D) MFI-type zeolite membrane was fabricated from zeolite nanosheet modules, which displayed excellent vanadium resistance (0.07 mmol L−1 h−1) and proton conductivity (0.16 S cm−1), yielding a coulombic efficiency of 93.9 %, a voltage efficiency of 87.6 %, and an energy efficiency of 82.3 % at 40 mA cm−2. The self-discharge period of a VFB equipped with 2D MFI-type zeolite membrane increased up to 116.2 h, which was significantly longer than that of the commercial perfluorinated sulfonate membrane (45.9 h). Furthermore, the corresponding battery performance remained stable over 1000 cycles (>1500 h) at 80 mA cm−2. These findings demonstrate that 2D MFI-type membranes are promising ion-conductive membranes applicable for stationary electrochemical energy-storage devices.  相似文献   

19.
Lamellar membranes show exceptional molecular permeation properties of key importance for many applications. However, their design and development need the construction of regular and straight interlayer channels and the establishment of corresponding transport rate equation. The fabrication of a uniformly lamellar membrane is reported using double‐layered Ti3C2Tx MXenes as rigid building blocks. This membrane possesses ordered and straight 2 nm channels formed via a direct self‐stacking, in contrast to the conventional irregular ones from flexible sheets. Such channels permit precise molecular rejection and unparalleled molecular permeation. The permeance of water and organics by this membrane reached 2300 and 5000 L m?2 h?1 bar?1, respectively. The molecular transfer mechanism in confined nanochannels, and the corresponding model equation are established, paving a way to nanoscale design of highly efficient channeled membranes for transport and separation applications.  相似文献   

20.
Developing a porous separation membrane that can efficiently separate oil–water emulsions still represents a challenge. In this study, nanofiber membranes with polydopamine clusters polymerized and embedded on the surface were successfully constructed using a solution blow-spinning process. The hierarchical surface structure enhanced the selective wettability, superhydrophilicity in air (≈0°), and underwater oleophobicity (≈160.2°) of the membrane. This membrane can effectively separate oil–water emulsions, achieving an excellent permeation flux (1552 Lm−2 h−1) and high separation efficiency (~99.86%) while operating only under the force of gravity. When the external driving pressure was increased to 20 kPa, the separation efficiency hardly changed (99.81%). However, the permeation flux significantly increased to 5894 Lm−2 h−1. These results show that the as-prepared polydopamine nanocluster-embedded nanofiber membrane has an excellent potential for oily wastewater treatment applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号