首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UO2F2 abstracts F anions from TlF in liquid ammonia solution and the compound [Tl2(NH3)6][{UO2F2(NH3)}2(μ-F)2] is formed. The compound has been characterized by single crystal X-ray diffraction, Raman spectroscopy and quantum-chemical calculations for the solid state. Quantum-chemical investigation of the [{UO2F2(NH3)}2(μ-F)2]2− anion showed that the U−(μ-F)−U σ-3c-4e-bond is essentially ionic. The [Tl2(NH3)6]2+ cation shows a thallophilic Tl⋅⋅⋅Tl interaction. Fluoride ion affinities (FIAs) were calculated for different UO22+ species [UO2Fx]2−x and [UO2Fx(NH3)5−x]2−x with x=0 to 4.  相似文献   

2.
《中国化学快报》2021,32(9):2833-2836
We report the fabrication of highly ordered Nb2O5 nanochannel film (Nb2O5-NCF) onto niobium foil by an anodization method. After thermal treatment, the obtained Nb2O5-NCF with rich oxygen vacancies exhibits electrochemical N2 reduction reaction (NRR) activity with an NH3 yield rate of 2.52 × 10−10 mol cm-2 s-1 and a faradaic efficiency of 9.81% at −0.4 V (vs. RHE) in 0.1 mol/L Na2SO4 electrolyte (pH 3.2). During electrocatalytic NRR, the Nb2O5-NCF takes place electrochromism (EC), along with a crystalline phase transformation from pseudo hexagonal phase to hexagonal phase owing to H+ insertion. This results in the reduced NRR activity due to the decrease of oxygen vacancies of hexagonal phase Nb2O5, which can be readily regenerated by low-temperature thermal treatment or applying an anodic potential, showing superior recycling reproducibility.  相似文献   

3.
The electrochemical reduction reaction of nitrogenous species such as NO3 (NO3RR) and N2 (NRR) is a promising strategy for producing ammonia under ambient conditions. However, low activity and poor selectivity of both NO3RR and NRR remain the biggest problem of all current electrocatalysts. In this work, we fabricated Cu-nanosphere film with a high surface area and dominant with a Cu(200) facet by simple electrodeposition method. The Cu-nanosphere film exhibits high electrocatalytic activity for NO3RR and NRR to ammonia under ambient conditions. In the nitrate environment, the Cu-nanosphere electrode reduced NO3 to yield NH3 at a rate of 5.2 mg/h cm2, with a Faradaic efficiency of 85 % at −1.3 V. In the N2-saturated environment, the Cu-nanosphere electrode reduced N2 to yield NH3 with the highest yield rate of 16.2 μg/h cm2 at −0.5 V, and the highest NH3 Faradaic efficiency of 41.6 % at −0.4 V. Furthermore, the Cu-nanosphere exhibits excellent stability with the NH3 yield rate, and the Faradaic efficiency remains stable after 10 consecutive cycles. Such high levels of NH3 yield, selectivity, and stability at low applied potential are among the best values currently reported in the literature.  相似文献   

4.
A diverse set of 2 e/2 H+ reactions are described that interconvert [RuII(bpy)(en*)2]2+ and [RuIV(bpy)(en‐H*)2]2+ (bpy=2,2′‐bipyridine, en*=H2NCMe2CMe2NH2, en*‐H=H2NCMe2CMe2NH), forming or cleaving different O−H, N−H, S−H, and C−H bonds. The reactions involve quinones, hydrazines, thiols, and 1,3‐cyclohexadiene. These proton‐coupled electron transfer reactions occur without substrate binding to the ruthenium center, but instead with precursor complex formation by hydrogen bonding. The free energies of the reactions vary over more than 90 kcal mol−1, but the rates are more dependent on the type of X−H bond involved than the associated ΔG °. There is a kinetic preference for substrates that have the transferring hydrogen atoms in close proximity, such as ortho ‐tetrachlorobenzoquinone over its para ‐isomer and 1,3‐cyclohexadiene over its 1,4‐isomer, perhaps hinting at the potential for concerted 2 e/2 H+ transfers.  相似文献   

5.
A density functional theory computational chemistry study has revealed a fundamental structural difference between [Ti(Cp)3]+ and its congeners [Zr(Cp)3]+ and [Hf(Cp)3]+/(Cp=cyclopentadienyl). Whereas the latter two are found to contain three uniformely η5-coordinated Cp ligands (3η5-structural type), [Ti(Cp)3]+ is shown to prefer a 2η5η2 structure. [Ti(Cp)3]+[B(C6F5)3(Me)] ( 10 ⋅[B(C6F5)3(Me)]) was experimentally generated by treatment of [Ti(Cp)3(Me)] ( 7a ) with B(C6F5)3 (Scheme 3). Low-temperature 1H-NMR spectroscopy in CDFCl2 (143 K, 600 MHz; Fig. 8) showed a splitting of the Cp resonance into five lines in a 2 : 5 : 2 : 5 : 1 ratio which would be in accord with the theoretically predicted 2η5η2-type structure of [Ti(Cp)3]+. The precursor [Ti(Cp)3(Me)] ( 7a ) exhibits two 1H-NMR Cp resonances in a 10 : 5 ratio in CD2Cl2 at 223 K. Treatment of [HfCl(Cp)2(Me)] ( 6c ) with sodium cyclopentadienide gave [Hf(Cp)3(Me)] ( 7c ) (Scheme 1). Its reaction with B(C6F5)3 furnished the salt [Hf(Cp)3]+[B(C6F5)3(Me)] ( 8 ⋅[B(C6F5)3(Me)]), which reacted with tert-butyl isocyanide to give the cationic complex [Hf(Cp)3(C=N−CMe3)]+ ( 9a ; with counterion [B(C6F5)3(Me)] (Scheme 2). Complex cation 9a was characterized by X-ray diffraction (Fig. 7). Its Hf(Cp3) moiety is of the 3η5-type. The structure is distorted trigonal-pyramidal with an average D−Hf−D angle of 118.8° and an average D−Hf−C(1) angle of 96.5° (D denotes the centroids of the Cp rings; Table 6). Cation 9a is a typical d0-isocyanide complex exhibiting structural parameters of the C≡N−CMe3 group (d(C(1)−N(2))=1.146 (5) Å; IR: v˜(C≡N) 2211 cm−1) very similar to free uncomplexed isonitrile. Analogous treatment of 8 with carbon monoxide yielded the carbonyl (d0-group-4-metal) complex [Hf(Cp)3(CO)]+ ( 9b ; with counterion [B(C6F5)3(Me)]) (Scheme 2) that was also characterized by X-ray crystal-structure analysis (Fig. 6). Complex 9b is also of the 3η5-structural type, similar to the peviously described cationic complex [Zr(Cp)3(CO)]+, and exhibits properties of the CO ligand (d(C−O)=1.11 (2) Å; IR: v˜(C≡O) 2137 cm−1) very similar to the free carbon monoxide molecule.  相似文献   

6.
A photochemical route to salts consisting of difluorooxychloronium(V) cations, [ClOF2]+, and hexafluorido(non)metallate(V) anions, [MF6] (M=V, Nb, Ta, Ru, Os, Ir, P, Sb) is presented. As starting materials, either metals, oxygen and ClF3 or oxides and ClF3 are used. The prepared compounds were characterized by single-crystal X-ray diffraction and Raman spectroscopy. The crystal structures of [ClOF2][MF6] (M=V, Ru, Os, Ir, P, Sb) are layer structures that are isotypic with the previously reported compound [ClOF2][AsF6], whereas for M=Nb and Ta, similar crystal structures with a different stacking variant of the layers are observed. Additionally, partial or full O/F disorder within the [ClOF2]+ cations of the Nb and Ta compounds occurs. In all compounds reported here, a trigonal pyramidal [ClOF2]+ cation with three additional Cl⋅⋅⋅F contacts to neighboring [MF6] anions is observed, resulting in a pseudo-octahedral coordination sphere around the Cl atom. The Cl−F and Cl−O bond lengths of the [ClOF2]+ cations seem to correlate with the effective ionic radii of the MV ions. Quantum-chemical, solid-state calculations well reproduce the experimental Raman spectra and show, as do quantum-chemical gas phase calculations, that the secondary Cl⋅⋅⋅F interactions are ionic in nature. However, both solid-state and gas-phase quantum-chemical calculations fail to reproduce the increases in the Cl−O bond lengths with increasing effective ionic radius of M in [MF6] and the Cl−O Raman shifts also do not generally follow this trend.  相似文献   

7.
Molybdenum(VI) bis(imido) complexes [Mo(NtBu)2(LR)2] (R=H 1 a ; R=CF3 1 b ) combined with B(C6F5)3 ( 1 a /B(C6F5)3, 1 b /B(C6F5)3) exhibit a frustrated Lewis pair (FLP) character that can heterolytically split H−H, Si−H and O−H bonds. Cleavage of H2 and Et3SiH affords ion pairs [Mo(NtBu)(NHtBu)(LR)2][HB(C6F5)3] (R=H 2 a ; R=CF3 2 b ) composed of a Mo(VI) amido imido cation and a hydridoborate anion, while reaction with H2O leads to [Mo(NtBu)(NHtBu)(LR)2][(HO)B(C6F5)3] (R=H 3 a ; R=CF3 3 b ). Ion pairs 2 a and 2 b are catalysts for the hydrosilylation of aldehydes with triethylsilane, with 2 b being more active than 2 a . Mechanistic elucidation revealed insertion of the aldehyde into the B−H bond of [HB(C6F5)3]. We were able to isolate and fully characterize, including by single-crystal X-ray diffraction analysis, the inserted products Mo(NtBu)(NHtBu)(LR)2][{PhCH2O}B(C6F5)3] (R=H 4 a ; R=CF3 4 b ). Catalysis occurs at [HB(C6F5)3] while [Mo(NtBu)(NHtBu)(LR)2]+ (R=H or CF3) act as the cationic counterions. However, the striking difference in reactivity gives ample evidence that molybdenum cations behave as weakly coordinating cations (WCC).  相似文献   

8.
The electrochemical nitrogen reduction reaction (NRR) is a promising energy-efficient and low-emission alternative to the traditional Haber–Bosch process. Usually, the competing hydrogen evolution reaction (HER) and the reaction barrier of ambient electrochemical NRR are significant challenges, making a simultaneous high NH3 formation rate and high Faradic efficiency (FE) difficult. To give effective NRR electrocatalysis and suppressed HER, the surface atomic structure of W18O49, which has exposed active W sites and weak binding for H2, is doped with Fe. A high NH3 formation rate of 24.7 μg h−1 mgcat−1 and a high FE of 20.0 % are achieved at an overpotential of only −0.15 V versus the reversible hydrogen electrode. Ab initio calculations reveal an intercalation-type doping of Fe atoms in the tunnels of the W18O49 crystal structure, which increases the oxygen vacancies and exposes more W active sites, optimizes the nitrogen adsorption energy, and facilitates the electrocatalytic NRR.  相似文献   

9.
We report herein the first nonheme CuFe oxygen reduction catalyst ([CuII(bpbp)(μ-OAc)2FeIII]2+, CuFe−OAc ), which serves as a functional model of cytochrome c oxidase and can catalyze oxygen reduction to water with a turnover frequency of 2.4×103 s−1 and selectivity of 96.0 % in the presence of Et3NH+. This performance significantly outcompetes its homobimetallic analogues (2.7 s−1 of CuCu−OAc with %H2O2 selectivity of 98.9 %, and inactive of FeFe−OAc ) under the same conditions. Structure-activity relationship studies, in combination with density functional theory calculation, show that the CuFe center efficiently mediates O−O bond cleavage via a CuII(μ-η1 : η2-O2)FeIII peroxo intermediate in which the peroxo ligand possesses distinctive coordinating and electronic character. Our work sheds light on the nature of Cu/Fe heterobimetallic cooperation in oxygen reduction catalysis and demonstrates the potential of this synergistic effect in the design of nonheme oxygen reduction catalysts.  相似文献   

10.
《Polyhedron》1999,18(26):3527-3531
The redox reaction between [Pt(NH3)4]2+ and [W(CN)8]3− in the presence of Cl anions in aqueous solution affords single crystals of [PtII(NH3)4]2[WIV(CN)8] and [PtIV(NH3)4Cl2]Cl2. Trapped cyano ligands of [W(CN)8]4− rectangular antiprisms of D2 point symmetry between parallel Pt(II) square planes show that the inner-sphere redox pathway is prohibited. The presence of Cl counterions enables the formation of [Pt(NH3)4Cl2]Cl2 as the product of the rare outer-sphere pathway of the oxidation of Pt(II) by [W(CN)8]3−.  相似文献   

11.
Electrocatalytic N2 reduction reaction (NRR) is recognized as a zero-carbon emission method for NH3 synthesis. However, to date, this technology still suffers from low yield and low selectivity associated with the catalyst. Herein, inspired by the activation of N2 by lithium metal, a highly reactive defective black phosphorene (D−BPene) is proposed as a lithium-like catalyst for boosting electrochemical N2 activation. Correspondingly, we also report a strategy for producing environmentally stable D−BPene by simultaneously constructing defects and fluorination protection based on topochemical reactions. Reliable performance evaluations show that the fluorine-stabilized D−BPene can induce a high NH3 yield rate of ≈70 μg h−1 mgcat.−1 and a high Faradaic efficiency of ≈26 % at −0.5 V vs. RHE in an aqueous electrolyte. This work not only exemplifies the first stable preparation and practical application of D−BPene, but also brings a new design idea for NRR catalysts.  相似文献   

12.
Molten salt electrolysis is a vital technique to produce high-purity lanthanide metals and alloys. However, the coordination environments of lanthanides in molten salts, which heavily affect the related redox potential and electrochemical properties, have not been well elucidated. Here, the competitive coordination of chloride and fluoride anions towards lanthanide cations (La3+ and Nd3+) is explored in molten LiCl-KCl-LiF-LnCl3 salts using electrochemical, spectroscopic, and computational approaches. Electrochemical analyses show that significant negative shifts in the reduction potential of Ln3+ occur when F concentration increases, indicating that the F anions interact with Ln3+ via substituting the coordinated Cl anions, and confirm [LnClxFy]3−x−y (ymax=3) complexes are prevailing in molten salts. Spectroscopic and computational results on solution structures further reveal the competition between Cl and F anions, which leads to the formation of four distinct Ln(III) species: [LnCl6]3−, [LnCl5F]3−, [LnCl4F2]3− and [LnCl4F3]4−. Among them, the seven-coordinated [LnCl4F3]4− complex possesses a low-symmetry structure evidenced by the pattern change of Raman spectra. After comparing the polarizing power (Z/r) among different metal cations, it was concluded that Ln−F interaction is weaker than that between transition metal and F ions.  相似文献   

13.
Reaction of [Pt(DMSO)2Cl2] or [Pd(MeCN)2Cl2] with the electron-rich LH=N,N’-bis(4-dimethylaminophenyl)ethanimidamide yielded mononuclear [PtL2] ( 1 ) but dinuclear [Pd2L4] ( 2 ), a paddle-wheel complex. The neutral compounds were characterized through experiments (crystal structures, electrochemistry, UV-vis-NIR spectroscopy, magnetic resonance) and TD-DFT calculations as metal(II) species with noninnocent ligands L. The reversibly accessible cations [PtL2]+ and [Pd2L4]+ were also studied, the latter as [Pd2L4][B{3,5-(CF3)2C6H3}4] single crystals. Experimental and computational investigations were directed at the elucidation of the electronic structures, establishing the correct oxidation states within the alternatives [PtII(L)2] or [Pt.(L )2], [PtII(L0.5−)2]+ or [PtIII(L)2]+, [(PdII)2(μ-L)4] or [(Pd1.5)2(μ-L0.75−)4], and [(Pd2.5)2(μ-L)4]+ or [(PdII)2(μ-L0.75−)4]+. In each case, the first alternative was shown to be most appropriate. Remarkable results include the preference of platinum for mononuclear planar [PtL2] with an N-Pt-N bite angle of 62.8(2)° in contrast to [Pd2L4], and the dimetal (Pd24+→Pd25+) instead of ligand (L→L ) oxidation of the dinuclear palladium compound.  相似文献   

14.
Electrochemically converting NO3 into NH3 offers a promising route for water treatment. Nevertheless, electroreduction of dilute NO3 is still suffering from low activity and/or selectivity. Herein, B as a modifier was introduced to tune electronic states of Cu and further regulate the performance of electrochemical NO3 reduction reaction (NO3RR) with dilute NO3 concentration (≤100 ppm NO3−N). Notably, a linear relationship was established by plotting NH3 yield vs. the oxidation state of Cu, indicating that the increase of Cu+ content leads to an enhanced NO3-to-NH3 conversion activity. Under a low NO3−N concentration of 100 ppm, the optimal Cu(B) catalyst displays a 100 % NO3-to-NH3 conversion at −0.55 to −0.6 V vs. RHE, and a record-high NH3 yield of 309 mmol h−1 gcat−1, which is more than 25 times compared with the pristine Cu nanoparticles (12 mmol h−1 gcat−1). This research provides an effective method for conversion of dilute NO3 to NH3, which has certain guiding significance for the efficient and green conversion of wastewater in the future.  相似文献   

15.
Addition of BH3·thf to 1-alkylimidazoles (alkyl=methyl, butyl) and 1-methylbenzimidazole leads to BH3 adducts, which are deprotonated by BuLi to yield the organolithium compounds (L)Li+(1bd). In the solid state (thf)Li+1b is dimeric. The acyl–iron complexes (thf)3Li+(3b,d) are formed from (thf)Li+(1b,d) and Fe(CO)5. (L)Li+(1ac) react with [CpFe(CO)2X], however, the only complex obtained is [CpFe(CO)21a] (5a). The analogous reaction of (L)Li+1a with the pentadienyl complex [(C7H11)Fe(CO)2Br] yields the corresponding iron compound 6a. Their compositions follow from spectroscopic data. Treatment of Cp2TiCl with (L)Li+1a leads to [Cp2Ti1a] (7a), which could not be oxidized with PbCl2 to give the corresponding Ti(IV) complex. The compounds [Li(py)4]+9a and [Li(L)4]+(10bd) are obtained when (L)Li+1 are reacted with VCl3 and ScCl3. The X-ray structure analysis of the vanadium complex reveals a distorted tetrahedron of the anion [V(1a)4] with two smaller and four larger CVC angles. The scandium compound [Li(dme)2+10c] has a different structure: the distorted tetrahedron of the anion [Sc(1c)4] contains two larger (140.2 and 142.9°) and four smaller CScC angles (93.9–98.7°). This arrangement allows the formation of four bridging BHSc 3c,2e bonds to give an eight-fold coordination. The anion 10c is formally a 16e complex.  相似文献   

16.
Atomically dispersed metal catalysts show potential advantages in N2 reduction reaction (NRR) due to their excellent activity and efficient metal utilization. Unfortunately, the reported catalysts usually exhibit unsatisfactory NRR activity due to their poor N2 adsorption and activation. Herein, we report a novel Sn atomically dispersed protuberance (ADP) by coordination with substrate C and O to induce positive charge accumulation on Sn site for improving its N2 adsorption, activation and NRR performance. The extended X-ray absorption fine structure (EXAFS) spectra confirmed the local coordination structure of the Sn ADPs. NRR activity was significantly promoted via Sn ADPs, exhibiting a remarkable NH3 yield (RNH3) of 28.3 μg h−1 mgcat−1 (7447 μg h−1 mgSn−1) at −0.3 V. Furthermore, the enhanced N2Hx intermediates was verified by in situ experiments, yielding consistent results with DFT calculation. This work opens a new avenue to regulate the activity and selectivity of N2 fixation.  相似文献   

17.
We report the synthesis and characterization of the nickelocenium cations [NiCp2]⋅+ and [NiCp2]2+ as their [F-{Al(ORF)3}2] (Cp = C5H5; RF=C(CF3)3) salts. Diamagnetic [NiCp2]2+ represents the first example for the isolation of an unsubstituted parent metallocene dication. Both salts were generated by reacting neutral NiCp2 with [NO]+[F-{Al(ORF)3}2] in 1,2,3,4-tetrafluorobenzene (4FB). The salts were characterized by single crystal X-ray diffraction (XRD), indicating shorter metal-ligand bond lengths for the higher charged salt. Powder XRD shows the salts to be phase pure, cyclic voltammetry in 4FB gave quasi reversible redox waves at −0.44 (0→1) and +1.17 V (1→2) vs Fc/Fc+. The 1H NMR of [NiCp2]2+ is a singlet at 8.6 ppm, whereas paramagnetic [NiCp2]⋅+ is significantly shifted upfield to −103.1 ppm.  相似文献   

18.
The syntheses of the two novel complexes [Ag{Mo/W(CO)6}2]+[F-{Al(ORF)3}2] (RF=C(CF3)3) are reported along with their structural and spectroscopic characterization. The X-ray structure shows that three carbonyl ligands from each M(CO)6 fragment bend towards the silver atom within binding Ag−C distance range. DFT calculations of the free cations [Ag{M(CO)6}2]+ (M=Cr, Mo, W) in the electronic singlet state give equilibrium structures with C2 symmetry with two bridging carbonyl groups from each hexacarbonyl ligand. Similar structures with C2 symmetry (M=Nb) and D2 symmetry (M=V, Ta) are calculated for the isoelectronic group 5 anions [Ag{M(CO)6}2] (M=V, Nb, Ta). The electronic structure of the cations is analyzed with the QTAIM and EDA-NOCV methods, which provide detailed information about the nature of the chemical bonds between Ag+ and the {M(CO)6}2q (q = −2, M = V, Nb, Ta; q = 0, M = Cr, Mo, W) ligands.  相似文献   

19.
The complexes Cp(MeIm)IrI2 and CpMe4(MeIm)IrCl2 have been prepared and subsequently methylated to form Cp(MeIm)IrMe2 and CpMe4(MeIm)IrMe2 (Cp=η5-C5H5, CpMe45-C5HMe4, MeIm=1,3-dimethylimidazol-2-ylidene). We attempted unsuccessfully to use the dimethyl complexes to study C−D bond activation via methyl-group abstraction. Protonation with one equivalent of a weak acid, such as 2,6-dimethylpyridinium chloride, affords methane and IrIII methyl chloride complexes. 1H-NMR experiments show addition of pyridinium [BArF20] (BArF20=[B(C6F5)4]) to the dimethyl species forms [Cp(MeIm)IrMe(py)]+[BArF20] (py=pyridine) or [CpMe4(MeIm)IrMe(py)]+[BArF20] respectively, alongside methane, while use of the [BArF20] salts of more bulky 2,6-dimethylpyridinium and 2,6-di-tert-butylpyridinium gave an intractable mixture. Likewise, the generation of 16 e species [CpMe4(MeIm)IrMe]+[BArF20] or [Cp(MeIm)IrMe]+[BarF20] at low temperature using 2,6-dimethylpyridinium or 2,6-di-tert-butylpyridinium in thawing C6D6 or toluene-d8 formed an intractable mixture and did not lead to C−D bond activation. X-ray structures of several IrIII complexes show similar sterics as that found for the previously reported Cp* analogue.  相似文献   

20.
The noble-gas difluoride adducts, NgF2 ⋅ CrOF4 and NgF2 ⋅ 2CrOF4 (Ng=Kr and Xe), have been synthesized and structurally characterized at low temperatures by Raman spectroscopy and single-crystal X-ray diffraction. The low fluoride ion affinity of CrOF4 renders it incapable of inducing fluoride ion transfer from NgF2 (Ng=Kr and Xe) to form ion-paired salts of the [NgF]+ cations having either the [CrOF5] or [Cr2O2F9] anions. The crystal structures show the NgF2 ⋅ CrOF4 adducts are comprised of Ft−Ng−Fb- - -Cr(O)F4 structural units in which NgF2 is weakly coordinated to CrOF4 by means of a fluorine bridge, Fb, in which Ng−Fb is elongated relative to the terminal Ng−Ft bond. In contrast with XeF2 ⋅ 2MOF4 (M=Mo or W) and KrF2 ⋅ 2MoOF4, in which the Lewis acidic, F4(O)M- - -Fb- - -M(O)F3 moiety coordinates to Ng through a single M- - -Fb−Ng bridge, both fluorine ligands of NgF2 coordinate to CrOF4 molecules to form F4(O)Cr- - -Fb−Ng−Fb- - -Cr(O)F4 adducts in which both Ng−Fb bonds are only marginally elongated relative to the Ng−F bonds of free NgF2. Quantum-chemical calculations show that the Cr−Fb bonds of NgF2 ⋅ CrOF4 and NgF2 ⋅ 2CrOF4 are predominantly electrostatic with a small degree of covalent character that accounts for their nonlinear Cr- - -Fb−Ng bridge angles and staggered O−Cr- - -Fb−Ng−Ft dihedral angles. The crystal structures and Raman spectra of two CrOF4 polymorphs have also been obtained. Both are comprised of fluorine-bridged chains that are cis- and trans-fluorine-bridged with respect to oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号