首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The selectivity control of Pd nanoparticles (NPs) in the direct CO esterification with methyl nitrite toward dimethyl oxalate (DMO) or dimethyl carbonate (DMC) remains a grand challenge. Herein, Pd NPs are incorporated into isoreticular metal–organic frameworks (MOFs), namely UiO-66-X (X=-H, -NO2, -NH2), affording Pd@UiO-66-X, which unexpectedly exhibit high selectivity (up to 99 %) to DMC and regulated activity in the direct CO esterification. In sharp contrast, the Pd NPs supported on the MOF, yielding Pd/UiO-66, displays high selectivity (89 %) to DMO as always reported with Pd NPs. Both experimental and DFT calculation results prove that the Pd location relative to UiO-66 gives rise to discriminated microenvironment of different amounts of interface between Zr-oxo clusters and Pd NPs in Pd@UiO-66 and Pd/UiO-66, resulting in their distinctly different selectivity. This is an unprecedented finding on the production of DMC by Pd NPs, which was previously achieved by Pd(II) only, in the direct CO esterification.  相似文献   

2.
利用资源丰富的天然铝土矿经NaOH溶液水热处理后焙烧,获得比表面积达174 m2·g-1铝土矿载体,制备了双金属Pd-Cu为活性组分的催化剂,金属Pd负载量为0.5%(质量百分数),以CO氧化反应为探针反应,详细考察了Cu含量的变化对催化剂物化性能的影响。研究发现,Cu的引入有利于提高金属Pd的分散度,同时随着Cu含量的变化,金属Pd与Cu之间以及金属与铝土矿载体之间的相互作用随之改变。催化剂的CO氧化反应性能评价结果表明,Pd和Cu负载量分别为0.5%和4%的样品(PdCu4/MB)催化反应性能最佳。结合表征结果认为,PdCu4/MB的高活性归因于良好的Pd和Cu分散度,金属Pd、Cu以及金属与载体之间较强的相互作用。此外,CO-TPD表征结果说明较强的CO吸附能力和从载体中获取氧的能力也有利于提高PdCu4/MB样品的CO氧化反应性能。  相似文献   

3.
利用资源丰富的天然铝土矿经NaOH溶液水热处理后焙烧,获得比表面积达174 m2·g-1铝土矿载体,制备了双金属Pd-Cu为活性组分的催化剂,金属Pd负载量为0.5%(质量百分数),以CO氧化反应为探针反应,详细考察了Cu含量的变化对催化剂物化性能的影响。研究发现,Cu的引入有利于提高金属Pd的分散度,同时随着Cu含量的变化,金属Pd与Cu之间以及金属与铝土矿载体之间的相互作用随之改变。催化剂的CO氧化反应性能评价结果表明,Pd和Cu负载量分别为0.5%和4%的样品(PdCu4/MB)催化反应性能最佳。结合表征结果认为,PdCu4/MB的高活性归因于良好的Pd和Cu分散度,金属Pd、Cu以及金属与载体之间较强的相互作用。此外,CO-TPD表征结果说明较强的CO吸附能力和从载体中获取氧的能力也有利于提高PdCu4/MB样品的CO氧化反应性能。  相似文献   

4.
The present study reports an environmental benign route for the synthesis of palladium nanoparticles (Pd NPs) using agro-waste empty cotton boll peels aqueous extract for the first time. Surface Plasmon Resonance (SPR) band in absorption spectrum of Pd NPs at 275 nm confirmed the formation of Pd NPs by using UV–Vis spectroscopy. Crystalline nature of Pd NPs was confirmed by powder XRD analysis. Size and morphology was studied by transmission electron microscopy (TEM). The cotton peels extract acted as a source of phytochemicals which primarily reduced Pd+2 to Pd0 nanoparticles (Pd NPs) and imparted stability of Pd NPs by surface capping. The characteristic functional groups of phytochemicals in extract and capped Pd NPs surfaces were identified by FT-IR analysis. Catalytic activity of the synthesised Pd NPs was checked against reduction of hazardous azo-dyes such as Congo red, Methyl orange, Sunset yellow and Tartrazine with NaBH4 as electron donors. Pd NPs catalysed reduction of all azo-dyes by NaBH4 in aqueous medium was monitored by UV–visible spectroscopy where Pd NPs mediated transfer of electrons from NaBH4 to azo-dyes as carrier. The synthesized Pd NPs acted as a good catalyst and could be a promising material in degrading toxic azo-dyes from industrial effluents and wastewater.  相似文献   

5.
Catalytic properties of Pd—Cu bimetallic catalysts supported on SiO2 and Al2O3 were studied in a model reaction of selective hydrogenation of diphenylacetylene. Application of PdCu2(AcO)6 heterobimetallic acetate complex as a precursor made it possible to obtain homogeneous Pd—Cu bimetallic nanoparticles. This result was supported by the data of IR spectroscopy of adsorbed CO. The Pd-Cu catalysts showed considerably higher selectivity than monometallic samples. Moreover, the introduction of copper decreases the hydrogenation rate of diphenylethylene (DPE) to diphenylethane. As a result, the maximum yield of the target product, DPE, increased from 78 to 93% in the presence of Pd—Cu catalysts.  相似文献   

6.
Recent efforts to design selective catalysts for multi-step reactions, such as hydrodeoxygenation (HDO), have emphasized the preparation of active sites at the interface between two materials having different properties. However, achieving precise control over interfacial properties, and thus reaction selectivity, has remained a challenge. Here, we encapsulated Pd nanoparticles (NPs) with TiO2 films of regulated porosity to gain a new level of control over catalyst performance, resulting in essentially 100 % HDO selectivity for two biomass-derived alcohols. This catalyst also showed exceptional reaction specificity in HDO of furfural and m-cresol. In addition to improving HDO activity by maximizing the interfacial contact between the metal and metal oxide sites, encapsulation by the nanoporous oxide film provided a significant selectivity boost by restricting the accessible conformations of aromatics on the surface.  相似文献   

7.
Adsorbed hydrogen participates in electrocatalytic reduction of CO2 and competitive hydrogen evolution reaction (HER) simultaneously, and its reaction pathway greatly affects the activity and selectivity of CO2 reduction. In this work, we investigate pH effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles (NPs) with a similar size in a pH range from 1.5 to 4.2. Pt NPs completely contribute to HER in the pH range. Over Pd NPs, Faradaic efficiency for CO production at − 1.19 V (vs. reversible hydrogen electrode) varies from 3.2% at pH of 1.5 to 93.2% at pH of 4.2, and current density for CO production reaches maximum at pH of 2.2. The significant enhancement of Faradaic efficiency and current density for CO production over Pd NPs at high pH values is attributed to decreased kinetics of hydrogen evolution reaction by increasing hydrogen binding energy and lowered adsorption affinity of CO-like intermediate compared to Pt.  相似文献   

8.
In analogy to the role of long‐chain polyamines in biosilicification, poly‐L ‐lysine facilitates the assembly of nanocomponents to design multifunctional microcapsule structures. The method is demonstrated by the fabrication of a magnetically separable catalyst that accommodates Pd nanoparticles (NPs) as active catalyst, Fe3O4 NPs as magnetic component for easy recovery of the catalyst, and silica NPs to impart stability and selectivity to the catalyst. In addition, polyamines embedded inside the microcapsule prevent the agglomeration of Pd NPs and thus result in efficient catalytic activity in hydrogenation reactions, and the hydrophilic silica surface results in selectivity in reactions depending on the polarity of substrates.  相似文献   

9.
Palladium nanoparticles (Pd NPs) encapsulated by conjugated microporous polymers (CMPs) were prepared by the Pd-catalyzed polymerization followed by a thermal treatment with N2 or H2. The Pd catalysts were embedded in the porous network during polymerization and used as a precursor for the generation of Pd NPs in CMP. Although no Pd NPs were formed in the as-synthesized Pd/CMPs, Pd NPs with 1.6–3.5 nm size were formed after the thermal treatment. The obtained Pd/CMP-N2 and -H2 catalysts were highly selective in the hydrogenation of 4-nitrostyrene to 4-ethylnitrobenzene, whereas Pd NPs supported on carbon (Ketjen black) gave a fully reduced product, 4-ethylaniline. Substituents in CMP framework could change the catalytic activity of Pd NPs; hydroxy-substituted CMP encapsulated Pd NPs showed higher catalytic activity than Pd/CMP-H2 for benzyl alcohol oxidation.  相似文献   

10.
Two-dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e oxygen reduction reaction (ORR). The use of different four-connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8-fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H2O2 selectivity of 85.8 % and activity, with a TOF value of 0.051 s−1 at 0.2 V, than a 2D COF (72.9 % and 0.032 s−1). This work paves the way for the development of COFs with low dimensions for electrocatalysis.  相似文献   

11.
杨漂萍  李璐璐  赵志坚  巩金龙 《催化学报》2021,42(5):817-823,中插24-中插28
以可再生能源为能量来源,在水溶液中进行的光(电)催化CO2还原生成高附加值化学品和燃料是解决能源危机与环境污染的有效途径之一.CO是一种简单却很重要的CO2还原产物,它可以作为水煤气变换反应与费托合成的重要原料.具有较高CO选择性的贵金属纳米颗粒催化剂(如Au和Pd)一直受到研究者的广泛关注.一般来说,金属颗粒催化剂的催化性能与粒径大小密切相关,即所谓的粒径效应.然而在实际的理论计算研究中,由于受到计算能力的限制,催化剂模型都仅局限于简单的周期性模型或小的金属团簇模型,无法准确描述真实颗粒上复杂的反应位点的性质,导致了对催化行为的误解.因此,建立更加真实的颗粒模型对探究纳米颗粒催化剂上活性位点的性质,解释其粒径效应至关重要.本文旨在阐述Au与Pd纳米颗粒催化剂不同活性位点上CO2还原反应与产H2副反应的竞争机制,并解释Au与Pd纳米颗粒催化剂在CO2电还原中表现出不同粒径效应的原因.本文基于密度泛函理论,采用VASP软件,BEEF-vdW泛函进行计算.分别建立了原子数为55,147,309和561的颗粒模型和高CO*覆盖度模型,避免了传统周期性模型的局限性,探究了金属颗粒催化剂不同反应位点上的CO选择性.结果表明,对于颗粒模型来说,(100)位点对CO的选择性优于边缘位点;但对于周期性模型来说,Au(211)对CO的选择性则优于Au(100).产生这种反差的主要原因在于Au颗粒的边缘位点对H*的吸附过强.通过对比,我们直观地展现了颗粒模型上平面位点和Edge位点与相对应的周期性模型上CO选择性的区别,突出了模型选择对揭示活性位点性质的重要性.在此基础上,通过计算理论CO法拉第效率,发现Au颗粒随着粒径的减小,CO选择性降低,与实验的趋势一致.对于Pd催化剂来说,低覆盖度模型无法正确预测活性位点的性质;而高CO覆盖度的情况下,Pd颗粒的边缘位点对COOH*吸附能更强,这是导致边缘位点上CO选择性更高的主要原因.同样通过计算理论CO法拉第效率,发现随着粒径的减小,Pd颗粒上CO选择性升高.本文不仅成功揭示了Au与Pd颗粒催化剂上活性位点的性质,对粒径效应做出了合理解释,也强调了合理的计算模型是理论研究的基础.  相似文献   

12.
《中国化学快报》2020,31(10):2762-2768
Here we report a facile defect-engineering strategy on the support to optimize the metal-support interaction and enhance the metal’s electrocatalytic hydrodechlorination performance in converting 2,4-dichlorophenol (2,4-DCP) to phenol. The specific activity of the Pd nanoparticles (Pd NPs) on defective polymer carbon nitride (Pd/PCN-x) reaches 0.09 min-1 m-2Pd, which is 1.5 times that of the Pd NPs supported on the perfect PCN (Pd/PCN-0). The combined experimental and theoretical results demonstrate that the strong adsorption of phenol on Pd/PCN-0 passivates the active sites, limiting the dechlorination progress. The PCN-x containing -C≡N defects can effectively mediate the spatial configuration and electronic structure of Pd NPs, and promote the preferential adsorption of 2,4-DCP rather than phenol, resulting in an enhanced dechlorination efficiency.  相似文献   

13.
Facile fabrication of nanocatalysts consisting of metal nanoparticles (NPs) anchored on a functional support is highly desirable, yet remains challenging. Covalent organic frameworks (COFs) provide an emerging materials platform for structural control and functional design. Here, a facile one-pot in situ reduction approach is demonstrated for the encapsulation of small Pd NPs into the shell of COF-derived hollow polyamine spheres (Pd@H-PPA). In the one-pot synthetic process, the nucleation and growth of Pd NPs in the cavities of the porous shell take place simultaneously with the reduction of imine linkages to secondary amine groups. Pd@H-PPA shows a significantly enhanced catalytic activity and recyclability in the tandem dehydrogenation of ammonia borane and selective hydrogenation of nitroarenes through an adsorption–activation–reaction mechanism. The strong interactions of the secondary amine linkage with borane and nitroarene molecules afford a positive synergy to promote the catalytic reaction. Moreover, the hierarchical structure of Pd@H-PPA allows the accessibility of active Pd NPs to reactants.  相似文献   

14.
A novel nonenzymatic H2O2 sensor based on a palladium nanoparticles/graphene (Pd‐NPs/GN) hybrid nanostructures composite film modified glassy carbon electrode (GCE) was reported. The composites of graphene (GN) decorated with Pd nanoparticles have been prepared by simultaneously reducing graphite oxide (GO) and K2PdCl4 in one pot. The Pd‐NPs were intended to enlarge the interplanar spacing of graphene nanosheets and were well dispersed on the surface or completely embedded into few‐layer GN, which maintain their high surface area and prevent GN from aggregating. XPS analysis indicated that the surface Pd atoms are negatively charged, favoring the reduction process of H2O2. Moreover, the Pd‐NPs/GN/GCE could remarkably decrease the overpotential and enhance the electron‐transfer rate due to the good contact between Pd‐NPs and GN sheets, and Pd‐NPs have high catalytical effect for H2O2 reduction. Amperometric measurements allow observation of the electrochemical reduction of H2O2 at 0.5 V (vs. Ag/AgCl). The H2O2 reduction current is linear to its concentration in the range from 1×10?9 to 2×10?3 M, and the detection limit was found to be 2×10?10 M (S/N=3). The as‐prepared nonenzymatic H2O2 sensor exhibits excellent repeatability, selectivity and long‐term stability.  相似文献   

15.
In-situ encapsulation of tiny and well-dispersed Pd nanoparticles (Pd NPs) in zeolitic imidazolate frameworks (ZIFs) was firstly achieved using a one-pot and facile methanol-mediated growth approach, in which methanol served as both solvent and a mild reductant. The microstructure, morphology, crystallinity, porosity as well as evolution process of the catalysts were determined by TEM, XRD, N2 adsorption and UV-vis spectra. Due to the complete encapsulation of such Pd NPs combined with ultrahigh surface area and uniform microporous structure of ZIF-8, the resulting Pd@ZIF-8-60 min nanocomposite exhibited more superior catalytic activity for olefins hydrogenation with TOF of 7436 h−1 and excellent size selectivity than previously reported catalysts. Furthermore, the catalyst displays excellent recyclability for 1-octene hydrogenation and without any loss of the Pd active species.  相似文献   

16.
Artificial H2O2 photosynthesis by covalent organic frameworks (COFs) photocatalysts is promising for wastewater treatment. The effect of linkage chemistry of COFs as functional basis to photoelectrochemical properties and photocatalysis remains a significant challenge. In this study, three kinds of azoles-linked COFs including thiazole-linked TZ-COF, oxazole-linked OZ-COF and imidazole-linked IZ-COF were successfully synthesized. More accessible channels of charge transfer were constructed in TZ-COF via the donor-π-acceptor structure between thiazole linkage and pyrene linker, leading to efficient suppression of photoexcited charge recombination. Density functional theory calculations support the experimental studies, demonstrating that the thiazole linkage is more favorable for the formation of *O2 intermediate in H2O2 production than that of the oxazole and imidazole linkages. The real active sites in COFs located at the benzene ring fragment between pyrene unit and azole linkage.  相似文献   

17.
Metal-free covalent organic frameworks (COFs) have been employed to catalyze the oxygen reduction reaction (ORR). To achieve high activity and selectivity, various building blocks containing heteroatoms and groups linked by imine bonds were used to create catalytic COFs. However, the roles of linkages of COFs in ORR have not been investigated. In this work, the catalytic linkage engineering has been employed to modulate the catalytic behaviors. To create single catalytic sites while avoiding other possible catalytic sites, we synthesized COFs from benzene units linked by various bonds, such as imine, amide, azine, and oxazole bonds. Among these COFs, the oxazole-linkage in COFs enables to catalyze the ORR with the highest activity, which achieved a half-wave potential of 0.75 V and a limited current density of 5.5 mA cm−2. Moreover, the oxazole-linked COF achieved a conversion frequency (TOF) value of 0.0133 S−1, which were 1.9, 1.3, and 7.4-times that of azine-, amide- and imine-COFs, respectively. The theoretical calculation showed that the carbon atoms in oxazole linkages facilitated the formation of OOH* and promoted protonation of O* to form the OH*, thus advancing the catalytic activity. This work guides us on which linkages in COFs are suitable for ORR.  相似文献   

18.
Highly monodisperse spherical 3 nm Pd–Cu alloy nanoparticles (NPs) were synthesized in high yield through the coreduction of [Pd(acac)2] (acac=acetylacetonate) and [Cu(acac)2] in nonhydrolytic solutions by using trioctylamine and oleic acid. The relative compositions of Pd and Cu could be tuned by controlling the molar ratios between the metal precursors in the raw solutions. The carbon‐supported Pd–Cu NPs (Pd–Cu/C) were chemically dealloyed by acetic acid washing, which resulted in the formation of porous structures. The prepared Pd–Cu/C catalysts exhibited at least threefold enhancement of Pd mass activities compared with a commercial Pd/C catalyst toward formic acid oxidation in an acidic medium, and also showed outstanding electrocatalytic stabilities. The improved electrocatalytic properties of the Pd–Cu NPs are attributed to the presence of a large number of active sites on their surfaces owing to their small particle sizes and chemically dealloyed porous structures.  相似文献   

19.
《化学:亚洲杂志》2017,12(8):860-867
Pd nanoparticles (NPs) supported on Ti‐doped graphitic carbon nitride (g‐C3N4) were synthesized by a deposition–precipitation route and a subsequent reduction with NaBH4. The features of the NPs were studied by XRD, TEM, FTIR, XPS, EXAFS and N2‐physisorption measurements. It was found that the NPs had an average size of 2.9 nm and presented a high dispersion on the surface of Ti‐doped g‐C3N4. Compared to Pd loaded on pristine g‐C3N4, the Pd NPs supported on Ti‐doped g‐C3N4 exhibited a high catalytic activity in formic acid dehydrogenation in water at room temperature. The enhanced activity could be attributed to the small Pd NPs size, as well as the strong interaction between Pd NPs and Ti‐doped g‐C3N4.  相似文献   

20.
Monodisperse palladium phosphide nanoparticles (Pd–P NPs) with a smallest size ever reported of 3.9 nm were fabricated using cheap and stable triphenylphosphine as phosphorous source. After the deposition and calcination at 300 °C and 400 °C, the resulting Pd–P NPs increased in size to 4.0 nm and 4.8 nm, respectively. Notably, the latter NPs probably crystallized with a single phase of Pd3P0.95, which acted as a highly active catalyst in semi‐ and stereoselective hydrogenation of alkynes. X‐ray photoelectron spectroscopy analysis determined a positive shift of binding energy for Pd(3d) in Pd–P NPs compared to that in Pd on carbon. It indicated the electron flow from metal to phosphorus and the larger electron deficiency of Pd in Pd–P NPs, which suppressed palladium hydride formation and subsequently increased the selectivity. Thus, this result may also indicate the applications of Pd–P and other metal–P NPs in various selective hydrogenation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号