首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen cycling (N2-NOx-NH3) is essential for maintaining life as it is crucial in fertilizers and nucleic acids. However, the current NH3 synthesis (N2-to-NH3) for fertilizers and energy requires large amounts of fossil fuels and greenhouse gas emissions, compromising its eco-economic significance. Meanwhile, approaches like selective catalytic reaction are applied to neutralize the toxic NOx into N2 but call for value-added NH3 as the reduction agent. In this regard, directly converting harmful NOx, one of the major environmental pollutants, into NH3 is a promising way to balance the nitrogen cycle eco-friendly, which is still in its infancy. Recently, the electrocatalytic NOx reduction reaction (NOxRR) unveiled a potential route for the NOx-to-NH3 conversion. This review presents the latest progress in the electrocatalytic NOxRR in reaction mechanism and catalysts design. It will provide a comprehensive understanding to guide future research in NOxRR, aiming to offer sustainable chemistry and energy feedstocks for the carbon-zero economy.  相似文献   

2.
Electrochemical N2 reduction reactions (NRR) and the N2 oxidation reaction (NOR), using H2O and N2, are a sustainable approach to N2 fixation. To date, owing to the chemical inertness of nitrogen, emerging electrocatalysts for the electrochemical NRR and NOR at room temperature and atmospheric pressure remain largely underexplored. Herein, a new‐type Fe‐SnO2 was designed as a Janus electrocatalyst for achieving highly efficient NRR and NOR catalysis. A high NH3 yield of 82.7 μg h?1 mgcat.?1 and a Faraday efficiency (FE) of 20.4 % were obtained for NRR. This catalyst can also serve as an excellent NOR electrocatalyst with a NO3? yields of 42.9 μg h?1 mgcat.?1 and a FE of 0.84 %. By means of experiments and DFT calculations, it is revealed that the oxygen vacancy‐anchored single‐atom Fe can effectively adsorb and activate chemical inert N2 molecules, lowering the energy barrier for the vital breakage of N≡N and resulting in the enhanced N2 fixation performance.  相似文献   

3.
Electrochemical N2 reduction reactions (NRR) and the N2 oxidation reaction (NOR), using H2O and N2, are a sustainable approach to N2 fixation. To date, owing to the chemical inertness of nitrogen, emerging electrocatalysts for the electrochemical NRR and NOR at room temperature and atmospheric pressure remain largely underexplored. Herein, a new-type Fe-SnO2 was designed as a Janus electrocatalyst for achieving highly efficient NRR and NOR catalysis. A high NH3 yield of 82.7 μg h−1 mgcat.−1 and a Faraday efficiency (FE) of 20.4 % were obtained for NRR. This catalyst can also serve as an excellent NOR electrocatalyst with a NO3 yields of 42.9 μg h−1 mgcat.−1 and a FE of 0.84 %. By means of experiments and DFT calculations, it is revealed that the oxygen vacancy-anchored single-atom Fe can effectively adsorb and activate chemical inert N2 molecules, lowering the energy barrier for the vital breakage of N≡N and resulting in the enhanced N2 fixation performance.  相似文献   

4.
The electrochemical nitrate (NO3) reduction reaction (NO3RR) to ammonia (NH3) represents a sustainable approach for denitrification to balance global nitrogen cycles and an alternative to traditional thermal Haber-Bosch processes. Here, we present a supramolecular strategy for promoting NH3 production in water from NO3RR by integrating two-dimensional (2D) molecular cobalt porphyrin ( CoTPP ) units into a three-dimensional (3D) porous organic cage architecture. The porphyrin box CoPB-C8 enhances electrochemical active site exposure, facilitates substrate–catalyst interactions, and improves catalyst stability, leading to turnover numbers and frequencies for NH3 production exceeding 200,000 and 56 s−1, respectively. These values represent a 15-fold increase in NO3RR activity and 200-mV improvement in overpotential for the 3D CoPB-C8 box structure compared to its 2D CoTPP counterpart. Synthetic tuning of peripheral alkyl substituents highlights the importance of supramolecular porosity and cavity size on electrochemical NO3RR activity. These findings establish the incorporation of 2D molecular units into 3D confined space microenvironments as an effective supramolecular design strategy for enhancing electrocatalysis.  相似文献   

5.
The electrochemical reduction reaction of nitrogenous species such as NO3 (NO3RR) and N2 (NRR) is a promising strategy for producing ammonia under ambient conditions. However, low activity and poor selectivity of both NO3RR and NRR remain the biggest problem of all current electrocatalysts. In this work, we fabricated Cu-nanosphere film with a high surface area and dominant with a Cu(200) facet by simple electrodeposition method. The Cu-nanosphere film exhibits high electrocatalytic activity for NO3RR and NRR to ammonia under ambient conditions. In the nitrate environment, the Cu-nanosphere electrode reduced NO3 to yield NH3 at a rate of 5.2 mg/h cm2, with a Faradaic efficiency of 85 % at −1.3 V. In the N2-saturated environment, the Cu-nanosphere electrode reduced N2 to yield NH3 with the highest yield rate of 16.2 μg/h cm2 at −0.5 V, and the highest NH3 Faradaic efficiency of 41.6 % at −0.4 V. Furthermore, the Cu-nanosphere exhibits excellent stability with the NH3 yield rate, and the Faradaic efficiency remains stable after 10 consecutive cycles. Such high levels of NH3 yield, selectivity, and stability at low applied potential are among the best values currently reported in the literature.  相似文献   

6.
Electrochemical generation of ammonia (NH3) from nitrogen (N2) using renewable electricity is a desirable alternative to current NH3 production methods, which consume roughly 1 % of the world's total energy use. The use of catalysts to manipulate the required electron and proton transfer reactions with low energy input is also a chemical challenge that requires development of fundamental reaction pathways. This work presents an approach to the electrochemical reduction of N2 into NH3 using a coordination complex of aluminum(III), which facilitates NH3 production at −1.16 V vs. SCE. Reactions performed under 15N2 liberate 15NH3. Electron paramagnetic resonance spectroscopic characterization of a reduced intermediate and investigations of product inhibition, which limit the reaction to sub-stoichiometric, are also presented.  相似文献   

7.
Ammonia is an industrial large-volume chemical, with its main application in fertilizer production. It also attracts increasing attention as a green-energy vector. Over the past century, ammonia production has been dominated by the Haber–Bosch process, in which a mixture of nitrogen and hydrogen gas is converted to ammonia at high temperatures and pressures. Haber–Bosch processes with natural gas as the source of hydrogen are responsible for a significant share of the global CO2 emissions. Processes involving plasma are currently being investigated as an alternative for decentralized ammonia production powered by renewable energy sources. In this work, we present the PNOCRA process (plasma nitrogen oxidation and catalytic reduction to ammonia), combining plasma-assisted nitrogen oxidation and lean NOx trap technology, adopted from diesel-engine exhaust gas aftertreatment technology. PNOCRA achieves an energy requirement of 4.6 MJ mol−1 NH3, which is more than four times less than the state-of-the-art plasma-enabled ammonia synthesis from N2 and H2 with reasonable yield (>1 %).  相似文献   

8.
In this paper, the NO-to-NO 2 conversion in various gaseous mixtures is experimentally investigated. Streamer coronas are produced with a dc-superimposed high-frequency ac power supply (10–60 kHz). According to NO x removal experiments in N 2 +NO x and N 2 +O 2 +NO x gaseous mixtures, it is supposed that the reverse reaction NO 2 +ONO+O 2 may not only limit NO 2 production in N 2 +NO x mixtures, but also increase the energy cost for NO removal. Oxygen could significantly suppress reduction reactions and enhance oxidation processes. The reduction reactions, such as N+NON 2 +O, induce negligible NO removal provided the O 2 concentration is larger than 3.6%. With adding H 2 O into the reactor, the produced NO 2 per unit removed NO can be significantly reduced due to NO 2 oxidation. NH 3 injection could also significantly decrease the produced NO 2 via NH and NH 2 - related reduction reactions. Almost 100% of NO 2 can be removed in gaseous mixtures of N 2 +O 2 +H 2 O+NO 2 with negligible NO production.  相似文献   

9.
高硅 Na-ZSM-5 分子筛表面 NO 的常温吸附-氧化机理   总被引:1,自引:0,他引:1  
刘华彦  张泽凯  徐媛媛  陈银飞  李希 《催化学报》2010,31(10):1233-1241
 采用程序升温表面反应 (TPSR) 和原位漫反射红外光谱 (DRIFTS) 等手段研究了常温下 NO 和 O2 在高硅 Na-ZSM-5 分子筛上吸附-氧化反应机理. 结果表明, Na-ZSM-5 分子筛上 NO 的催化氧化过程中伴随着显著的 NO2 物理吸附, 表现为 NO 氧化和 NO2 吸附间的动态平衡. Na-ZSM-5 分子筛表面 NOx 吸附物种的 TPSR 和原位 DRIFTS 表征表明, 化学吸附的 NO 和气相中的 O2  在 Na-ZSM-5 表面反应生成吸附态的 NO3, 并继续与 NO 作用生成弱吸附的 NO2  和 N2 O4, 它们吸附饱和后释放出来; 其中, 强吸附的 NO3 在 NO 氧化过程中起到了反应中间体的作用, 同时也促进了 NO 的吸附.  相似文献   

10.
利用溶胶-凝胶法,采用三种酸性金属氧化物(氧化铌、氧化钨和氧化钼)对锰铈复合氧化物催化剂进行了改性. 测试了催化剂的氮氧化物选择性催化还原(SCR)活性,以筛选对应不同温度窗口的合适酸性氧化物改性剂. 同时评价了催化剂的NO氧化和NH3氧化活性. 利用X射线衍射、BET比表面积测试、H2程序升温还原、NH3/NOx程序升温脱附和NH3/NOx吸附红外光谱等手段对催化剂进行了表征. MnOx-CeO2催化剂表现出良好的低温(100-150 ℃)活性. 酸性金属氧化物的添加削弱了催化剂的氧化还原特性,从而抑制了NH3的活化和NO2辅助的快速SCR反应. 与此同时,相对高温(250-350 ℃)区NH3的氧化也受到了抑制,B酸和L酸上的NH3吸附得以增强. 因此,催化剂的SCR脱硝温度窗口向高温移动,改性效果Nb2O5 < WO3 < MoO3.  相似文献   

11.
Reversible interconversion of water into H2 and O2, and the recombination of H2 and O2 to H2O thereby harnessing the energy of the reaction provides a completely green cycle for sustainable energy conversion and storage. The realization of this goal is however hampered by the lack of efficient catalysts for water splitting and oxygen reduction. We report exceptionally active bifunctional catalysts for oxygen electrodes comprising Mn3O4 and Co3O4 nanoparticles embedded in nitrogen‐doped carbon, obtained by selective pyrolysis and subsequent mild calcination of manganese and cobalt N4 macrocyclic complexes. Intimate interaction was observed between the metals and nitrogen suggesting residual M–Nx coordination in the catalysts. The catalysts afford remarkably lower reversible overpotentials in KOH (0.1 M ) than those for RuO2, IrO2, Pt, NiO, Mn3O4, and Co3O4, thus placing them among the best non‐precious‐metal catalysts for reversible oxygen electrodes reported to date.  相似文献   

12.
The kinetics of the reduction of N2 to N2H4 and NH3 by TiIII-MoIII hydroxide was studied at pH I I and 303-333 K, and the activation energies for these reactions and also for the reaction N2H4 2 NH3 were determined (29, 70, and 25 kJ mol respectively). It was concluded that -90 % of ammonia was formed by the direct reduction of N2 without intermediate formation of hydrazine. A mechanism of this reaction is suggested, which includes the proton insertion into the N-N bond favored by an enhanced electron density at the nitrogen atoms, according to the data of the quantum-mechanical calculation.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1402–1405, June, 1996.  相似文献   

13.
Competition from hydrogen/oxygen evolution reactions and low solubility of N2 in aqueous systems limited the selectivity and activity on nitrogen fixation reaction. Herein, we design an aerobic-hydrophobic Janus structure by introducing fluorinated modification on porous carbon nanofibers embedded with partially carbonized iron heterojunctions (Fe3C/Fe@PCNF-F). The simulations prove that the Janus structure can keep the internal Fe3C/Fe@PCNF-F away from water infiltration and endow a N2 molecular-concentrating effect, suppressing the competing reactions and overcoming the mass-transfer limitations to build a robust “quasi-solid–gas” state micro-domain around the catalyst surface. In this proof-of-concept system, the Fe3C/Fe@PCNF-F exhibits excellent electrocatalytic performance for nitrogen fixation (NH3 yield rate up to 29.2 μg h−1 mg−1cat. and Faraday efficiency (FE) up to 27.8 % in nitrogen reduction reaction; NO3 yield rate up to 15.7 μg h−1 mg−1cat. and FE up to 3.4 % in nitrogen oxidation reaction).  相似文献   

14.
Rh is a promising electrocatalyst for the nitrogen reduction reaction (NRR) given its suitable nitrogen‐adsorption energy and low overpotential. However, the NRR pathway on Rh surfaces remains unknown. In this study, we employ surface‐enhanced infrared‐absorption spectroscopy (SEIRAS) and differential electrochemical mass spectrometry (DEMS) to study the reaction mechanism of NRR on Rh. N2Hx (0≤x≤2) is detected with a N=N stretching mode at ≈2020 cm?1 by SEIRAS and a signal at m/z=29 by DEMS. A new two‐step reaction pathway on Rh surfaces is proposed that involves an electrochemical process with a two‐electron transfer to form N2H2 and its subsequent decomposition in the electrolyte producing NH3. Our results also indicate that nitrate reduction and the NRR share the same reaction intermediate N2Hx.  相似文献   

15.
Template combination of copper acetate (Cu(AcO)2?H2O) with sodium dicyanamide (NaN(C≡N)2, 2 equiv) or cyanoguanidine (N≡CNHC(=NH)NH2, 2 equiv) and an alcohol ROH (used also as solvent) leads to the neutral copper(II)–(2,4‐alkoxy‐1,3,5‐triazapentadienato) complexes [Cu{NH?C(OR)NC(OR)?NH}2] (R=Me ( 1 ), Et ( 2 ), nPr ( 3 ), iPr ( 4 ), CH2CH2OCH3 ( 5 )) or cationic copper(II)–(2‐alkoxy‐4‐amino‐1,3,5‐triazapentadiene) complexes [Cu{NH?C(OR)NHC(NH2)?NH}2](AcO)2 (R=Me ( 6 ), Et ( 7 ), nPr ( 8 ), nBu ( 9 ), CH2CH2OCH3 ( 10 )), respectively. Several intermediates of this reaction were isolated and a pathway was proposed. The deprotonation of 6 – 10 with NaOH allows their transformation to the corresponding neutral triazapentadienates [Cu{NH?C(OR)NC(NH2)?NH}2] 11 – 15 . Reaction of 11 , 12 or 15 with acetyl acetone (MeC(?O)CH2C(?O)Me) leads to liberation of the corresponding pyrimidines NC(Me)CHC(Me)NC NHC(?NH)OR, whereas the same treatment of the cationic complexes 6 , 7 or 10 allows the corresponding metal‐free triazapentadiene salts {NH2C(OR)?NC(NH2)?NH2}(OAc) to be isolated. The alkoxy‐1,3,5‐triazapentadiene/ato copper(II) complexes have been applied as efficient catalysts for the TEMPO radical‐mediated mild aerobic oxidation of alcohols to the corresponding aldehydes (molar yields of aldehydes of up to 100 % with >99 % selectivity) and for the solvent‐free microwave‐assisted synthesis of ketones from secondary alcohols with tert‐butylhydroperoxide as oxidant (yields of up to 97 %, turnover numbers of up to 485 and turnover frequencies of up to 1170 h?1).  相似文献   

16.
Electrochemically converting nitrate to ammonia is an essential and sustainable approach to restoring the globally perturbed nitrogen cycle. The rational design of catalysts for the nitrate reduction reaction (NO3RR) based on a detailed understanding of the reaction mechanism is of high significance. We report a Cu2O+Co3O4 tandem catalyst which enhances the NH3 production rate by ≈2.7-fold compared to Co3O4 and ≈7.5-fold compared with Cu2O, respectively, however, most importantly, we precisely place single Cu2O and Co3O4 cube-shaped nanoparticles individually and together on carbon nanoelectrodes provide insight into the mechanism of the tandem catalysis. The structural and phase evolution of the individual Cu2O+Co3O4 nanocubes during NO3RR is unveiled using identical location transmission electron microscopy. Combining single-entity electrochemistry with precise nano-placement sheds light on the dynamic transformation of single catalyst particles during tandem catalysis in a direct way.  相似文献   

17.
The electrochemical conversion of nitrate pollutants into value-added ammonia is a feasible way to achieve artificial nitrogen cycle. However, the development of electrocatalytic nitrate-to-ammonia reduction reaction (NO3RR) has been hampered by high overpotential and low Faradaic efficiency. Here we develop an iron single-atom catalyst coordinated with nitrogen and phosphorus on hollow carbon polyhedron (denoted as Fe−N/P−C) as a NO3RR electrocatalyst. Owing to the tuning effect of phosphorus atoms on breaking local charge symmetry of the single-Fe-atom catalyst, it facilitates the adsorption of nitrate ions and enrichment of some key reaction intermediates during the NO3RR process. The Fe−N/P−C catalyst exhibits 90.3 % ammonia Faradaic efficiency with a yield rate of 17980 μg h−1 mgcat−1, greatly outperforming the reported Fe-based catalysts. Furthermore, operando SR-FTIR spectroscopy measurements reveal the reaction pathway based on key intermediates observed under different applied potentials and reaction durations. Density functional theory calculations demonstrate that the optimized free energy of NO3RR intermediates is ascribed to the asymmetric atomic interface configuration, which achieves the optimal electron density distribution. This work demonstrates the critical role of atomic-level precision modulation by heteroatom doping for the NO3RR, providing an effective strategy for improving the catalytic performance of single atom catalysts in different electrochemical reactions.  相似文献   

18.
This account describes the results collected by our group during the last years on some themes of environmental/mechanistic interest. Theoretical quantum-mechanical investigations have been carried out to help clarifying the mechanism of some oxidation reactions, which involve mainly unsaturated but also saturated organics as substrates, and, as reactive oxidants, triplet or singlet dioxygen, hydroxyl, ozone, and nitrogen oxides. Depending on the problem, the calculations are either multi-configurational (as CAS-MCSCF, CAS-PT2, MC-QDPT2), or based on the Density Functional Theory for the heavier systems. Research work has thus been developed along the following lines: hydrocarbon oxidations under atmospheric or combustion conditions; definition of a model for soot particles and their interaction with species as HO, O2, O3, NO, NO2, NO3, etc.; investigation on the reaction mechanism of 1Δg dioxygen with organic unsaturated systems (cycloaddition and ene reactions).  相似文献   

19.
Electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions provides an intriguing picture for the conversion of N2 into NH3. However, electrocatalytic NRR mainly relies on metal‐based catalysts, and it remains a grand challenge in enabling effective N2 activation on metal‐free catalysts. Here we report a defect engineering strategy to realize effective NRR performance (NH3 yield: 8.09 μg h?1 mg?1cat., Faradaic efficiency: 11.59 %) on metal‐free polymeric carbon nitride (PCN) catalyst. Illustrated by density functional theory calculations, dinitrogen molecule can be chemisorbed on as‐engineered nitrogen vacancies of PCN through constructing a dinuclear end‐on bound structure for spatial electron transfer. Furthermore, the N?N bond length of adsorbed N2 increases dramatically, which corresponds to “strong activation” system to reduce N2 into NH3. This work also highlights the significance of defect engineering for improving electrocatalysts with weak N2 adsorption and activation ability.  相似文献   

20.
《中国化学快报》2021,32(10):3137-3142
Ammonia (NH3) is considered an attractive candidate as a clean, highly efficient energy carrier. The electrocatalytic nitrogen reduction reaction (NRR) can reduce energy input and carbon footprint; therefore, rational design of effective electrocatalysts is essential for achieving high-efficiency electrocatalytic NH3 synthesis. Herein, we report that the enzymatic mechanism is the more favourable pathway for NRR, due to lower limiting potential (−0.44 V), lower free energy (only 0.02 eV) of the first hydrogenation step (*N–N to *NH–N), and more electron transfer from Fe2B2 to the reaction species. In addition, both vacancies and dopants can be helpful in reducing the reaction energy barrier of the potential-determining step. Therefore, we have demonstrated that Fe2B2 is a potential new candidate for effective NRR and highlighted its potential for applications in electrocatalytic NH3 synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号