首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO2 under electrochemical potentials and reveal the intrinsic relationship between CO2ER product selectivity and the in situ evolved heterostructures. At −0.85 VRHE, the CuO/SnO2 evolves to Cu2O/SnO2 with high selectivity to HCOOH (Faradaic efficiency of 54.81 %). Mostly interestingly, it is reconstructed to Cu/SnO2-x at −1.05 VRHE with significantly improved Faradaic efficiency to ethanol of 39.8 %. In situ Raman spectra and density functional theory (DFT) calculations reveal that the synergetic absorption of *COOH and *CHOCO intermediates at the interface of Cu/SnO2-x favors the formation of *CO and decreases the energy barrier of C−C coupling, leading to high selectivity to ethanol.  相似文献   

2.
We present surface reconstruction-induced C−C coupling whereby CO2 is converted into ethylene. The wurtzite phase of CuGaS2. undergoes in situ surface reconstruction, leading to the formation of a thin CuO layer over the pristine catalyst, which facilitates selective conversion of CO2 to ethylene (C2H4). Upon illumination, the catalyst efficiently converts CO2 to C2H4 with 75.1 % selectivity (92.7 % selectivity in terms of Relectron) and a 20.6 μmol g−1 h−1 evolution rate. Subsequent spectroscopic and microscopic studies supported by theoretical analysis revealed operando-generated Cu2+, with the assistance of existing Cu+, functioning as an anchor for the generated *CO and thereby facilitating C−C coupling. This study demonstrates strain-induced in situ surface reconstruction leading to heterojunction formation, which finetunes the oxidation state of Cu and modulates the CO2 reduction reaction pathway to selective formation of ethylene.  相似文献   

3.
4.
The electrochemical conversion of carbon dioxide (CO2) to carbon monoxide (CO) is a favorable approach to reduce CO2 emission while converting excess sustainable energy to important chemical feedstocks. At high current density (>100 mA cm−2), low energy efficiency (EE) and unaffordable cell cost limit the industrial application of conventional CO2 electrolyzers. Thus, a crucial and urgent task is to design a new type of CO2 electrolyzer that can work efficiently at high current density. Here we report a polymer-supported liquid layer (PSL) electrolyzer using polypropylene non-woven fabric as a separator between anode and cathode. Ag based cathode was fed with humid CO2 and potassium hydroxide was fed to earth-abundant NiFe-based anode. In this configuration, the PSL provided high-pH condition for the cathode reaction and reduced the cell resistance, achieving a high full cell EE over 66 % at 100 mA cm−2.  相似文献   

5.
As electron transfer to CO2 is generally considered to be the critical step during the activation of CO2, it is important to develop approaches to engineer the electronic properties of catalysts to improve their performance in CO2 electrochemical reduction. Herein, we developed an efficient strategy to facilitate CO2 activation by introducing oxygen vacancies into electrocatalysts with electronic‐rich surface. ZnO nanosheets rich in oxygen vacancies exhibited a current density of ?16.1 mA cm?2 with a Faradaic efficiency of 83 % for CO production. Based on density functional theory (DFT) calculations, the introduction of oxygen vacancies increased the charge density of ZnO around the valence band maximum, resulting in the enhanced activation of CO2. Mechanistic studies further revealed that the enhancement of CO production by introducing oxygen vacancies into ZnO nanosheets originated from the increased binding strength of CO2 and the eased CO2 activation.  相似文献   

6.
Photocatalytic conversion of CO2 is of great interest but it often suffers sluggish oxidation half reaction and undesired by-products. Here, we report for the first the simultaneous co-photocatalytic CO2 reduction and ethanol oxidation towards one identical value-added CH3CHO product on a rubidium and potassium co-modified carbon nitride (CN-KRb). The CN-KRb offers a record photocatalytic activity of 1212.3 μmol h−1g−1 with a high selectivity of 93.3 % for CH3CHO production, outperforming all the state-of-art CO2 photocatalysts. It is disclosed that the introduced Rb boosts the *OHCCHO fromation and facilitates the CH3CHO desorption, while K promotes ethanol adsorption and activation. Moreover, the H+ stemming from ethanol oxidation is confirmed to participate in the CO2 reduction process, endowing near ideal overall atomic economy. This work provides a new strategy for effective use of the photoexcited electron and hole for high selective and sustainable conversion of CO2 paired with oxidation reaction into identical product.  相似文献   

7.
Tin disulfide (SnS2) is a promising candidate for electrosynthesis of CO2-to-formate while the low activity and selectivity remain a great challenge. Herein, we report the potentiostatic and pulsed potential CO2RR performance of SnS2 nanosheets (NSs) with tunable S-vacancy and exposure of Sn-atoms or S-atoms prepared controllably by calcination of SnS2 at different temperatures under the H2/Ar atmosphere. The catalytic activity of S-vacancy SnS2 (Vs-SnS2) is improved 1.8 times, but it exhibits an exclusive hydrogen evolution with about 100 % FE under all potentials investigated in the static conditions. The theoretical calculations reveal that the adsorption of *H on the Vs-SnS2 surface is energetically more favorable than the carbonaceous intermediates, resulting in active site coverage that hinders the carbon intermediates from being adsorbed. Fortunately, the main product can be switched from hydrogen to formate by applying pulsed potential electrolysis benefiting from in situ formed partially oxidized SnS2−x with the oxide phase selective to formate and the S-vacancy to hydrogen. This work highlights not only the Vs-SnS2 NSs lead to exclusively H2 formation, but also provides insights into the systematic design of highly selective CO2 reduction catalysts reconstructed by pulsed potential electrolysis.  相似文献   

8.
The electrochemical reduction of CO2 to fuels or commodity chemicals is a reaction of high interest for closing the anthropogenic carbon cycle. The role of the electrolyte is of particular interest, as the interplay between the electrocatalytic surface and the electrolyte plays an important role in determining the outcome of the CO2 reduction reaction. Therefore, insights on electrolyte effects on the electrochemical reduction of CO2 are pivotal in designing electrochemical devices that are able to efficiently and selectively convert CO2 into valuable products. Here, we provide an overview of recently obtained insights on electrolyte effects and we discuss how these insights can be used as design parameters for the construction of new electrocatalytic systems.  相似文献   

9.
We present herein a Cp*Co(III)‐half‐sandwich catalyst system for electrocatalytic CO2 reduction in aqueous acetonitrile solution. In addition to an electron‐donating Cp* ligand (Cp*=pentamethylcyclopentadienyl), the catalyst featured a proton‐responsive pyridyl‐benzimidazole‐based N,N‐bidentate ligand. Owing to the presence of a relatively electron‐rich Co center, the reduced Co(I)‐state was made prone to activate the electrophilic carbon center of CO2. At the same time, the proton‐responsive benzimidazole scaffold was susceptible to facilitate proton‐transfer during the subsequent reduction of CO2. The above factors rendered the present catalyst active toward producing CO as the major product over the other potential 2e/2H+ reduced product HCOOH, in contrast to the only known similar half‐sandwich CpCo(III)‐based CO2‐reduction catalysts which produced HCOOH selectively. The system exhibited a Faradaic efficiency (FE) of about 70% while the overpotential for CO production was found to be 0.78 V, as determined by controlled‐potential electrolysis.  相似文献   

10.
The direct electrochemical conversion of CO2 to multi-carbon products offers a promising pathway for producing value-added chemicals using renewable electricity. However, producing ethanol remains a challenge because of the competitive ethylene formation and hydrogen evolution reactions. Herein, we propose an active hydrogen (*H)-intermediate-mediating strategy for ethanol electroproduction on a layered precursor-derived CuAl2O4/CuO catalyst. The catalyst delivered a Faradaic efficiency of 70 % for multi-carbon products and 41 % for ethanol at current density of 200 mA cm−2 and exhibited a continuous 150 h durability in a flow cell. The intensive spectroscopic studies combined with theoretical calculations revealed that the in situ generated CuAl2O4 could tailor *H intermediate coverage and the elevated *H coverage favors the hydrogenation of the *HCCOH intermediate, accounting for the increased yield of ethanol. This work directs a pathway for enhancing ethanol electroproduction from CO2 reduction by tailoring *H intermediate coverage.  相似文献   

11.
A series of manganese polypyridine complexes were prepared as CO2 reduction electrocatalysts. Among these catalysts, the intramolecular proton tunneling distance for metal hydride formation (PTD-MH) vary from 2.400 to 2.696 Å while the structural, energetic, and electronic factors remain essentially similar to each other. The experimental and theoretical results revealed that the selectivity of CO2 reduction reaction (CO2RR) is dominated by the intramolecular PTD-MH within a difference of ca. 0.3 Å. Specifically, the catalyst functionalized with a pendent phenol group featuring a slightly longer PTD-MH favors the binding of proton to the [Mn−CO2] adduct rather than the Mn center and results in ca. 100 % selectivity for CO product. In contrast, decreasing the PTD-MH by attaching a dangling tertiary amine in the same catalyst skeleton facilitates the proton binding on the Mn center and switches the product from CO to HCOOH with a selectivity of 86 %.  相似文献   

12.
Recent years have seen a growing interest in metal-free CO2 activation by silylenes, silylones, and silanones. However, compared to mononuclear silicon species, CO2 reduction mediated by dinuclear silicon compounds, especially disilynes, has been less explored. We have carried out extensive computational investigations to explore the mechanistic avenues in CO2 reduction to CO by donor-stabilized disilyne bisphosphine adduct ( R1M ) and phosphonium silaylide ( R2 ) using density functional theory calculations. Theoretical calculations suggest that R1M exhibits donor-stabilized bis(silylene) bonding features with unusual Si−Si multiple bonding. Various modes of CO2 coordination to R1M have been investigated and the coordination of CO2 by the carbon center to R1M is found to be kinetically more facile than that by oxygen involving only one or both the silicon centers. Both the theoretically predicted reaction mechanisms of R1M and R2 -mediated CO2 reduction reveal the crucial role of silicon-centered lone pairs in CO2 activations and generation of key intermediates possessing enormous strain in the Si−C−O ring, which plays the pivotal role in CO extrusion.  相似文献   

13.
采用原位阳极氧化-煅烧法制备TiO_2纳米管(TiO_2NTs)电极,运用X射线衍射(XRD)、电场发射扫描电子显微镜(FESEM)、X射线光电子能谱(XPS)、双电位阶跃测试等对制备电极进行表征,考察了其在0.1mol?L~(-1) KHCO_3水溶液中电化学还原CO_2的催化活性。结果表明TiO_2NTs电极上电化学还原CO_2的主产物为CH_3OH,CH_3OH由HCOOH和HCHO进一步还原而来。电极制备的最佳煅烧温度为450℃(TiO_2NTs-450),电解电位-0.56 V(vs RHE(可逆氢电极))时反应120 min后,生成CH_3OH的法拉第效率和分电流密度分别为85.8%和0.2 m A?cm~(-2)。与550和650℃煅烧的电极相比,TiO_2NTs-450电极具有更高的催化活性,归因于电极表面更多的三价钛活性位,有利于CO_2吸附,从而对·CO_2-起到稳定的作用,速率控制步骤转变为·CO_2-的质子化反应。  相似文献   

14.
Closing the anthropogenic carbon cycle by converting CO2 into reusable chemicals is an attractive solution to mitigate rising concentrations of CO2 in the atmosphere. Herein, we prepared Ni metal catalysts ranging in size from single atoms to over 100 nm and distributed them across N-doped carbon substrates which were obtained from converted zeolitic imidazolate frameworks (ZIF). The results show variance in CO2 reduction performance with variance in Ni metal size. Ni single atoms demonstrate a superior Faradaic efficiency (FE) for CO selectivity (ca. 97 % at −0.8 V vs. RHE), while results for 4.1 nm Ni nanoparticles are slightly lower (ca. 93 %). Further increase the Ni particle size to 37.2 nm allows the H2 evolution reaction (HER) to compete with the CO2 reduction reaction (CO2RR). The FE towards CO production decreases to under 30 % and HER efficiency increase to over 70 %. These results show a size-dependent CO2 reduction for various sizes of Ni metal catalysts.  相似文献   

15.
Electrochemically reducing CO2 to valuable fuels or feedstocks is recognized as a promising strategy to simultaneously tackle the crises of fossil fuel shortage and carbon emission. Sn-based catalysts have been widely studied for electrochemical CO2 reduction reaction (CO2RR) to make formic acid/formate, which unfortunately still suffer from low activity, selectivity and stability. In this work, halogen (F, Cl, Br or I) was introduced into the Sn catalyst by a facile hydrolysis method. The presence of halogen was confirmed by a collection of ex situ and in situ characterizations, which rendered a more positive valence state of Sn in halogen-incorporated Sn catalyst as compared to unmodified Sn under cathodic potentials in CO2RR and therefore tuned the adsorption strength of the key intermediate (*OCHO) toward formate formation. As a result, the halogen-incorporated Sn catalyst exhibited greatly enhanced catalytic performance in electrochemical CO2RR to produce formate.  相似文献   

16.
Through the combustion of fossil fuels and other human activities, large amounts of CO2 gas have been emitted into the atmosphere, causing many environmental problems, such as the greenhouse effect and global warming. Thus, developing and utilizing renewable clean energy is crucial to reduce CO2 emission and achieve carbon neutrality. The electrochemical CO2 reduction reaction (CO2RR) has been considered as an effective approach to obtain high value-added chemicals and fuels, which can store intermittent renewable energy and achieve the artificial carbon cycle. In addition, due to its multiple advantages, such as mild reaction conditions, tunable products, and simple implementation, electrochemical CO2RR has attracted extensive attention. Electrochemical CO2RR involves multiple electron–proton transfer steps to obtain multitudinous products, such as C1 products (CO, HCOOH, CH4, etc.) and C2 products (C2H4, C2H5OH, etc.). The intermediates, among which *CO is usually identified as the key intermediate, and reaction pathways of different products intersect, resulting in an extremely complex reaction mechanism. Currently, copper has been widely proven to be the only metal catalyst that can efficiently reduce CO2 to hydrocarbons and oxygenates due to its suitable adsorption energy for *CO. However, the low product selectivity, poor stability, and high overpotential of pure Cu hinder its use for the production of industrial-grade multi-carbon products. Tandem catalysts with multiple types of active sites can sequentially reduce CO2 molecules into desired products. When loaded onto a co-catalyst that can efficiently convert CO2 to *CO (such as Au and Ag), Cu acts as an electron donor owing to its high electrochemical potential. *CO species generated from the substrate can spillover onto the surface of electron-poor Cu due to the stronger adsorption and be further reduced to C2+ products. The use of Cu-based tandem catalysts for electrochemical CO2RR is a promising strategy for improving the performance of CO2RR and thus, has become a research hotspot in recent years. In this review, we first introduce the reaction routes and tandem mechanisms of electrochemical CO2RR. Then, we systematically summarize the recent research progress of Cu-based tandem catalysts for electrochemical CO2RR, including Cu-based metallic materials (alloys, heterojunction, and core-shell structures) as well as Cu-based framework materials, carbon materials, and polymer-modified materials. Importantly, the preparation methods of various Cu-based tandem catalysts and their structure–activity relationship in CO2RR are discussed and analyzed in detail. Finally, the challenges and opportunities of the rational design and controllable synthesis of advanced tandem catalysts for electrochemical CO2RR are proposed.  相似文献   

17.
化石燃料的燃烧和其他人类活动排放了大量的CO2气体,引发了诸多环境问题。电催化CO2还原反应(CO2RR)可以储存间歇可再生能源,实现人为闭合碳循环,被认为是获得高附加值化学品和燃料的有效途径。电催化CO2RR涉及多个电子-质子转移步骤,其中*CO通常被认为是关键中间体。铜由于对*CO具有合适的吸附能,已被广泛证明是唯一能够有效地将CO2还原为碳氢化合物和含氧化合物的金属催化剂。然而,纯Cu稳定性差、产品选择性低、过电位高,阻碍了工业级多碳产品的生产。构筑Cu基串联催化剂是提高CO2RR性能的一种有前途的策略。本文首先介绍电催化CO2RR的反应路线和串联机理。然后,系统地总结铜基串联催化剂对电催化CO2RR的最新研究进展。最后,提出合理设计和可控合成新型电催化CO2RR串联催化剂面临的挑战和机遇。  相似文献   

18.
The CO2 level in the atmosphere has been increasing since the industrial revolution owing to anthropogenic activities. The increased CO2 level has led to global warming and also has detrimental effects on human beings. Reducing the CO2 level in the atmosphere is urgent for balancing the carbon cycle. In this regard, reduction in CO2 emission and CO2 storage and usage are the main strategies. Among these, CO2 usage has been extensively explored, because it can reduce the CO2 level and simultaneously provide opportunities for the development in catalysts and industries to convert CO2 as a carbon source for preparing valuable products. However, transformation of CO2 to other chemicals is challenging owing to its thermodynamic and kinetic stabilities. Among the CO2 utilization techniques, electrochemical CO2 reduction (ECR) is a promising alternative because it is generally conducted under ambient conditions, and water is used as the economical hydrogen source. Moreover, ECR offers a potential route to store electrical energy from renewable sources in the form of chemical energy, through generation of CO2 reduction products. To improve the energy efficiency and viability of ECR, it is important to decrease the operational overpotential and maintain large current densities and high product selectivities; the development of efficient electrocatalysts is a critical aspect in this regard. To date, many kinds of materials have been designed and studied for application in ECR. Among these materials, metal oxide-based materials exhibit excellent performance as electrocatalysts for ECR and are attracting increasing attention in recent years. Investigation of the mechanism of reactions that involve metallic electrocatalysts has revealed the function of trace amount of oxidized metal species—it has been suggested that the presence of metal oxides and metal-oxygen bonds facilitates the activation of CO2 and the subsequent formation and stabilization of the reaction intermediates, thereby resulting in high efficiency and selectivity of the ECR. Although the stability of metal oxides is a concern as they are prone to reduction under a cathodic potential, the catalytic performance of metal oxide-based catalysts can be maintained through careful designing of the morphology and structure of the materials. In addition, introducing other metal species to metal oxides and fabricating composites of metal oxides and other materials are effective strategies to achieve enhanced performance in ECR. In this review, we summarize the recent progress in the use of metal oxide-based materials as electrocatalysts and their application in ECR. The critical role, stability, and structure-performance relationship of the metal oxide-based materials for ECR are highlighted in the discussion. In the final part, we propose the future prospects for the development of metal oxide-based electrocatalysts for ECR.  相似文献   

19.
应用程序电位扫描法和电化学原位FTIR反射光谱从定量角度在分子水平 上研究了CO2在Rh电极上的电催化还原性能。红外光谱结果指出CO2还原的吸附产物为线型和桥式吸附态CO物种。在所研究和还原电位范围(-0.15-0.40V)和相同还原时间,CO2还原吸附物种的氧化电量随还原电位的负移而增大,在每个还原电位下,时间超过250s时都可达到一个相应的饱和值。原位红外光谱和电化学研究结果表明,CO2的还原与Rh电极表面氢吸附反应密切相关,同时需要一定数量相邻表面位的参与。因此生成的CO不能在Rh电极表面达到满单层吸附,而是形成均匀的亚单层分布。  相似文献   

20.
Carbonylation of ethanol with CO2 as carbonyl source into value-added esters is of considerable significance and interest, while remains of great challenge due to the harsh conditions for activation of inert CO2 in that the harsh conditions result in undesired activation of α-C−H and even cleavage of C−C bond in ethanol to deteriorate the specific activation of O−H bond. Herein, we propose a photo-thermal cooperative strategy for carbonylation of ethanol with CO2, in which CO2 is activated to reactive CO via photo-catalysis with the assistance of *H from thermally-catalyzed dissociation of alcoholic O−H bond. To achieve this proposal, an interfacial site and oxygen vacancy both abundant SrTiCuO3-x supported Cu2O (Cu2O-SrTiCuO3-x) has been designed. A production of up to 320 μmol g−1 h−1 for ethyl formate with a selectivity of 85.6 % to targeted alcoholic O−H activation has been afforded in photo-thermal assisted gas-solid process under 3.29 W cm−1 of UV/Vis light irradiation (144 °C) and 0.2 MPa CO2. In the photo-driven activation of CO2 and following carbonylation, CO2 activation energy decreases to 12.6 kJ mol−1, and the cleavage of alcoholic α-C−H bond has been suppressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号