首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 1 毫秒
1.
Ionic compounds containing sodium cations are notable for their stability and resistance to redox reactivity unless highly reducing electrical potentials are applied. Here we report that treatment of a low oxidation state {Mg2Na2} species with non-reducible organic bases induces the spontaneous and completely selective extrusion of sodium metal and oxidation of the MgI centers to the more conventional MgII state. Although these processes are also characterized by a structural reorganisation of the initially chelated diamide spectator ligand, computational quantum chemical studies indicate that intramolecular electron transfer is abetted by the frontier molecular orbitals (HOMO/LUMO) of the {Mg2Na2} ensemble, which arise exclusively from the 3s valence atomic orbitals of the constituent sodium and magnesium atoms.  相似文献   

2.
The reaction of bisdicyclohexylphosphinoethane (dcpe) and the subvalent MI sources [MI(PhF)2][pf] (M=Ga+, In+; [pf]=[Al(ORF)4]; RF=C(CF3)3) yielded the salts [{M(dcpe)}2][pf]2, containing the first dicationic, trans-bent digallene and diindene structures reported so far. The non-classical MI⇆MI double bonds are surprisingly short and display a ditetrylene-like structure. The bonding situation was extensively analyzed by quantum chemical calculations, QTAIM (Quantum Theory of Atoms in Molecules) and EDA-NOCV (Energy Decomposition Analysis with the combination of Natural Orbitals for Chemical Valence) analyses and is compared to that in the isoelectronic and isostructural, but neutral digermenes and distannenes. The dissolved [{Ga(dcpe)}2]2+([pf])2 readily reacts with 1-hexene, cyclooctyne, diphenyldisulfide, diphenylphosphine and under mild conditions at room temperature. This reactivity is analyzed and rationalized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号