首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
An experimental and theoretical study of the electronic structure of copper phthalocyanine (CuPc) molecule is presented. We performed x-ray photoemission spectroscopy (XPS) and photoabsorption [x-ray absorption near-edge structure (XANES)] gas phase experiments and we compared the results with self-consistent field, density functional theory (DFT), and static-exchange theoretical calculations. In addition, ultraviolet photoelectron spectra (UPS) allowed disentangling several outer molecular orbitals. A detailed study of the two highest occupied orbitals (having a(1u) and b(1g) symmetries) is presented: the high energy resolution available for UPS measurements allowed resolving an extra feature assigned to vibrational stretching in the pyrrole rings. This observation, together with the computed DFT electron density distributions of the outer valence orbitals, suggests that the a(1u) orbital (the highest occupied molecular orbital) is mainly localized on the carbon atoms of pyrrole rings and it is doubly occupied, while the b(1g) orbital, singly occupied, is mainly localized on the Cu atom. Ab initio calculations of XPS and XANES spectra at carbon K edge of CuPc are also presented. The comparison between experiment and theory revealed that, in spite of being formally not equivalent, carbon atoms of the benzene rings experience a similar electronic environment. Carbon K-edge absorption spectra were interpreted in terms of different contributions coming from chemically shifted C 1s orbitals of the nonequivalent carbon atoms on the inner ring of the molecule formed by the sequence of CN bonds and on the benzene rings, respectively, and also in terms of different electronic distributions of the excited lowest unoccupied molecular orbital (LUMO) and LUMO+1. In particular, the degenerate LUMO appears to be mostly localized on the inner pyrrole ring.  相似文献   

2.
Reactions of NO and CO with Fe(II) complexes of the tripodal trithiolate ligands NS3 and PS3* yield trigonal-bipyramidal (TBP) complexes with varying redox states and reactivity patterns with respect to dissociation of the diatomic ligand. The previously reported four-coordinate [Fe(II)(NS3)](-) complex reacts irreversibly with NO gas to yield the S = 3/2 {FeNO}(7) [Fe(NS3)(NO)](-) anion, isolated as the Me(4)N(+) salt. In contrast, the reaction of NO with the species generated by the reaction of FeCl(2) with Li(3)PS3* gives a high yield of the neutral, TBP, S = 1 complex, [Fe(PS3*)(NO)], the first example of a paramagnetic {FeNO}(6) complex. X-ray crystallographic analyses show that both [Fe(NS3)(NO)](-) and [Fe(PS3*)(NO)] feature short Fe-N(NO) distances, 1.756(6) and 1.676(3) A, respectively. However, whereas [Fe(NS3)(NO)]- exhibits a distinctly bent FeNO angle and a chiral pinwheel conformation of the NS3 ligand, [Fe(PS3*)(NO)] has nearly C(3v) local symmetry and a linear FeNO unit. The S = 1 [Fe(II)(PS3)L] complexes, where L = 1-MeIm, CN(-), CO, and NO(+), exhibit a pronounced lengthening of the Fe-P distances along the series, the values being 2.101(2), 2.142(1), 2.165(7), and 2.240(1) A, respectively. This order correlates with the pi-backbonding ability of the fifth ligand L. The cyclic voltammogram of the [Fe(NS3)(NO)](-) anion shows an irreversible oxidation at +0.394 V (vs SCE), apparently with loss of NO, when scanned anodically in DMF. In contrast, [Fe(PS3*)(NO)] exhibits a reversible {FeNO}(6)/{FeNO}(7) couple at a low potential of -0.127 V. Qualitatively consistent with these electrochemical findings, DFT (PW91/STO-TZP) calculations predict a substantially lower gas-phase adiabatic ionization potential for the [Fe(PS3)(NO)](-) anion (2.06 eV) than for [Fe(NS3)(NO)](-) (2.55 eV). The greater instability of the {FeNO}(7) state with the PS3* ligand results from a stronger antibonding interaction involving the metal d(z(2)) orbital and the phosphine lone pair than the analogous orbital interaction in the NS3 case. The antibonding interaction involving the NS3 amine lone pair affords a relatively "stereochemically active" dz2 electron, the z direction being roughly along the Fe-N(NO) vector. As a result, the {FeNO}(7) unit is substantially bent. By contrast, the lack of a trans ligand in [Fe(S(t)Bu)3(NO)](-), a rare example of a tetrahedral {FeNO}(7) complex, results in a "stereochemically inactive" d(z(2)) orbital and an essentially linear FeNO unit.  相似文献   

3.
The geometric and electronic structures of a series of hypothetical compounds of the types CpM(C13H9N) and (CO)3M(C13H9N) (M = first row transition metal and C13H9N = 7,8-benzoquinoline) have been investigated by means of density functional theory (DFT). The benzoquinoline ligand can bind to the metal through η16 coordination modes, adopting structures of types a, b and c, in agreement with the electron count and the nature of the metal. In the investigated species, the most favored closed-shell count is 18-MVE, except for the Ti and V models which prefer the open-shell 16-MVE configuration. This study has shown the difference in the coordination ability of this heteropolycyclic ligand and coordination of the inner C6 ring is less favored than the outer C6 and C5N rings, in agreement with the π-electron density localization.  相似文献   

4.
The HeI photoelectron spectra of H2CS3 and H2CS4 in the gas phase have been obtained for the first time. A complete theoretical study involving the calculation of the ionization energies using orbital valence Green's functional (OVGF) and population analysis was performed. Calculations of cation-radical forms were carried out in order to interpret the main characters of the six highest occupied molecular orbitals (HOMOs). The first vertical ionization potentials are 8.74 and 8.56eV for H2CS3 and H2CS4, and attributed to {9b2(nS(C=S))}-1 and {8a"(3ppi*(S-S), nS)}-1, respectively. Meanwhile, the energy sequence of three types of sulfur 3p lone-pair have been discussed: 3ppi(S-S)*相似文献   

5.
This paper reports on the results of our electronic structure study of bisdicarbollide complexes of transition metals Fe, Co, Ni, and Cu (36 compounds) by X-ray photoelectron and X-ray emission spectroscopy. Translated fromZhurnal Struktumoi Khimii, Vol. 40, No. 2, pp. 358–371, March–April, 1999.  相似文献   

6.
The Mulliken charges of the 12-metallacrown-3 complex [(C(6)H(6))Ru(C(5)H(3)NO(2))](3) were determined by a single point analysis at the HF level. For comparison, a Mulliken population analysis was carried out for the organic analogue 12-crown-3. The partial negative charges on the O-donor atoms of the metallamacrocycle were found to be larger than those on the O-donor atoms of 12-crown-3. The 12-metallacrown-3 complex [(cymene)Ru(C(5)H(2)ClNO(2))](3) with chloro-substituents in position 5 of the pyridonate ligand was synthesized to determine the effect of electron withdrawing groups on the structure and the host-guest properties of the receptor. The chloro-substituents were found to have only a small influence on the structures, but they reduce the binding affinity for LiCl and NaCl by approximately 2 orders of magnitude.  相似文献   

7.
The phosphorescent binuclear iridium(III) complexes tetrakis(2-phenylpyridine)μ-(2,2':6',2'-terpyridine-6,6'-dicarboxylic acid)diiridium (Ir1) and tetrakis(2-(2,4-difluorophenyl) pyridine))μ-(2,2':6',2'-terpyridine-6,6'-dicarboxylic acid)diiridium (Ir2) were synthesized in a straightforward manner and characterized using X-ray diffraction, NMR, UV-vis absorption, and emission spectroscopy. The complexes have similar solution structures in which the two iridium centers are equivalent. This is further confirmed by the solid state structure of Ir2. The newly reported complexes display intense luminescence in dichloromethane solutions with maxima at 538 (Ir1) and 477 nm (Ir2) at 298 K (496 and 468 nm at 77 K, respectively) and emission quantum yields reaching ~18% for Ir1. The emission quantum yield for Ir1 is among the highest values reported for dinuclear iridium complexes. It shows only a 11% decrease with respect to the emission quantum yield reported for its mononuclear analogue, while the molar extinction coefficient is roughly doubled. This suggests that such architectures are of potential interest for the development of polymetallic assemblies showing improved optical properties. DFT and time-dependent-DFT calculations were performed on the ground and excited states of the complexes to provide insights into their structural, electronic, and photophysical properties.  相似文献   

8.
A comprehensive theoretical study of the geometries, energetics, and electronic structure of neutral and charged 3d transition metal atoms (M) interacting with benzene molecules (Bz) is carried out using density functional theory and generalized gradient approximation for the exchange-correlation potential. The variation of the metal-benzene distances, dissociation energies, ionization potentials, electron affinities, and spin multiplicities across the 3d series in MBz complexes differs qualitatively from those in M(Bz)(2). For example, the stability of Cr(Bz)(2) is enhanced over that of CrBz by almost a factor of 30. On the other hand, the magnetic moment of Cr(Bz)(2) is completely quenched although CrBz has the highest magnetic moment, namely 6 mu(B), in the 3d metal-benzene series. In multidecker complexes involving V(2)(Bz)(3) and Fe(2)(Bz)(3), the metal atoms are found to couple antiferromagnetically. In addition, their dissociation energies and ionization potentials are reduced from those in corresponding M(Bz)(2) complexes. All of these results agree well with available experimental data and demonstrate the important role the organic support can play on the properties of metal atoms/clusters.  相似文献   

9.
The compound [Fe(eta-C5H5)(CO)2(Me)] reacts thermally with N-heterocyclic carbenes (L) to give both alkyl, [Fe(eta-C5H5)(L)(CO)(Me)], and acyl, [Fe(eta-C5H5)(L)(CO)(COMe)], derivatives. The reaction temperature has been shown to affect the product distribution. The alkyl and acyl derivatives exist in an equilibrium that is more easily perturbed than in the tertiary phosphine analogues. DFT studies on the reactivity of [Fe(eta-C5H5)(CO)2(Me)] with PH3 and dihydroimidazole-2-ylidene (IH) have shown that CO exchange is energetically favoured for IH, and energetically disfavoured for PH3. The products of CO-induced migratory insertion, [Fe(eta-C5H5)(L)(CO)(COMe)], are more stable than the parent alkyl, [Fe(eta-C5H5)(L)(CO)(Me)], compounds. This stabilisation is larger when L = IH than when L = PH3. Stabilisation of the transition state by agostic interactions was seen in both instances, but this was significantly more pronounced for L = IH.  相似文献   

10.
The experimental UV/vis absorption spectrum of ortho-nitrobenzaldehyde (o-NBA) has been assigned by means of MS-CASPT2/CASSCF, TD-DFT, and RI-CC2 theoretical computations. Additional information on the nature of the absorbing bands was obtained by comparing the o-NBA spectrum with that of related compounds, as, e.g., nitrobenzene and benzaldehyde. For wavelengths larger than approximately 280 nm, the absorption spectrum of o-NBA is dominated by a series of weak n pi* absorptions from the NO2 and CHO groups. These weak transitions are followed in energy by a more intense band, peaking at 250 nm and arising from charge transfer pi pi* excitations involving mainly benzene and nitro orbitals. Finally, the most intense band centered at 220 nm has its origin in the overlap of two different absorptions: the first one localized in the NO2 substituent and the second one arising from a charge transfer excitation involving the NO2 and the CHO fragments, respectively.  相似文献   

11.
The donor-acceptor copolymer containing benzothiadiazole (electron acceptor), linked to functionalized fluorene (electron donor), [poly[9,9-bis(3'-(tert-butyl propanoate))fluorene-co-4,7-(2,1,3-benzothiadiazole)] (LaPPS40), was synthesized through the Suzuki route. The polymer was characterized by scanning electron microscopy, gel permeation chromatography, NMR, thermal analysis, cyclic voltammetry, X-ray photoelectron spectroscopy, UV-vis spectrometry, and photophysical measurements. Theoretical calculations (density functional theory and semiempirical methodologies) used to simulate the geometry of some oligomers and the dipole moments of molecular orbitals involved were in excellent agreement with experimental results. Using such data, the higher energy absorption band was attributed to the π-π* (S(0) → S(4)) transition of the fluorene units and the lower lying band was attributed to the intramolecular (ICT) (S(0) → S(1)) charge transfer between acceptor (benzothiadiazole) and donor groups (fluorene) (D-A structure). The ICT character of this band was confirmed by its solvatochromic properties using solvents with different dielectric properties, and this behavior could be well described by the Lippert-Mataga equation. To explain the solvatochromic behavior, both the magnitude and orientation of the dipole moments in the electronic ground state and in the excited state were analyzed using the theoretical data. According to these data, the change in magnitude of the dipole moments was very small for both transitions but the spatial orientation changed remarkably for the lower energy band ascribed to the ICT band.  相似文献   

12.
Experimental redox potentials of the couples [Cu(R-L ( n ))(CH 3CN)] (2+,+), where L (1) is bis-(pyridine-2-ylmethyl)-benzylamine, L (2) is (pyridine-2-ylethyl)(pyridine-2-ylmethyl)-benzylamine, and R is H, Me, or CF 3, were determined in dichloromethane solution. The compounds exhibited one simple quasi-reversible wave over the measured potential range of -500 to +1200 mV, and the E 1/2 values varied from +200 to +850 mV versus SCE. These experimental values were correlated with redox potentials calculated using density functional theory. The optimized geometries and the predicted redox potentials were obtained using the BP86 functional and a combination of the basis sets LACV3P** (for Cu) and cc-pVTZ(-f) (for light atoms). A distortion analysis of all of the optimized geometries for both oxidation states was performed using the generalized interconversion coordinate phi. A linear relation was obtained between this parameter and the redox potentials. However, the [Cu(CF 3-L (1))(CH 3CN)] (+) complex showed the largest deviation, which was explained by the more-rigid structure of the ligand.  相似文献   

13.
The solvent-coordinated [Me(3)Si·arene][B(C(6)F(5))(4)] salts (arene = benzene, toluene, ethylbenzene, n-propylbenzene, isopropylbenzene, o-xylene, m-xylene, p-xylene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene) are prepared and fully characterized. As an interesting decomposition product the formation of bissilylated fluoronium ion [Me(3)Si-F-SiMe(3)](+) was observed and even cocrystallized with [Me(3)Si·arene][B(C(6)F(5))(4)] (arene = benzene and toluene). Investigation of the degradation of [Me(3)Si·arene][B(C(6)F(5))(4)] reveals the formation of fluoronium salt [Me(3)Si-F-SiMe(3)][B(C(6)F(5))(4)], B(C(6)F(5))(3), and a reactive "C(6)F(4)" species which could be trapped with CS(2). Upon addition of CS(2), the formation of a formal S-heterocyclic carbene adduct, C(6)F(4)CS(2)-B(C(6)F(5))(3), was observed. The structure and bonding of substituted [Me(3)Si·arene][B(C(6)F(5))(4)] with arene = R(n)C(6)H(6-n) (R = H, Me, Et, Pr, and Bu; n = 0-6) is discussed on the basis of experimental and theoretical data. X-ray data of [Me(3)Si·arene][B(C(6)F(5))(4)] salts reveal nonplanar arene species with significant cation···anion interactions. As shown by different theoretical approaches (charge transfer, partial charges, trimethylsilyl affinity values) stabilizing inductive effects occur; however, the magnitude of such effects differs depending on the degree of substitution and the substitution pattern.  相似文献   

14.
The electronic structure of iron phthalocyanine (FePc) in the valence region was examined within a joint theoretical-experimental collaboration. Particular emphasis was placed on the determination of the energy position of the Fe 3d levels in proximity of the highest occupied molecular orbital (HOMO). Photoelectron spectroscopy (PES) measurements were performed on FePc in gas phase at several photon energies in the interval between 21 and 150 eV. Significant variations of the relative intensities were observed, indicating a different elemental and atomic orbital composition of the highest lying spectral features. The electronic structure of a single FePc molecule was first computed by quantum chemical calculations by means of density functional theory (DFT). The hybrid Becke 3-parameter, Lee, Yang and Parr (B3LYP) functional and the semilocal 1996 functional of Perdew, Burke and Ernzerhof (PBE) of the generalized gradient approximation (GGA-)type, exchange-correlation functionals were used. The DFT/B3LYP calculations find that the HOMO is a doubly occupied π-type orbital formed by the carbon 2p electrons, and the HOMO-1 is a mixing of carbon 2p and iron 3d electrons. In contrast, the DFT/PBE calculations find an iron 3d contribution in the HOMO. The experimental photoelectron spectra of the valence band taken at different energies were simulated by means of the Gelius model, taking into account the atomic subshell photoionization cross sections. Moreover, calculations of the electronic structure of FePc using the GGA+U method were performed, where the strong correlations of the Fe 3d electronic states were incorporated through the Hubbard model. Through a comparison with our quantum chemical calculations we find that the best agreement with the experimental results is obtained for a U(eff) value of 5 eV.  相似文献   

15.
16.
The (1)H and (13)C NMR spectra of a number of push-pull alkenes were recorded and the (13)C chemical shifts calculated employing the GIAO perturbation method. Of the various levels of theory tried, MP2 calculations with a triple-zeta-valence basis set were found to be the most effective for providing reliable results. The effect of the solvent was also considered but only by single-point calculations. Generally, the agreement between the experimental and theoretically calculated (13)C chemical shifts was good with only the carbons of the carbonyl, thiocarbonyl, and cyano groups deviating significantly. The substituents on the different sides of the central C=C partial double bond were classified qualitatively with respect to their donor (S,S < S,N < N,N) and acceptor properties (C identical with N < C=O < C=S) and according to the ring size on the donor side (6 < 7 < 5). The geometries of both the ground (GS) and transition states (TS) of the restricted rotation about the central C=C partial double bond were also calculated at the HF and MP2 levels of theory and the free energy differences compared with the barriers to rotation determined experimentally by dynamic NMR spectroscopy. Structural differences between the various push-pull alkenes were reproduced well, but the barriers to rotation were generally overestimated theoretically. Nevertheless, by correlating the barriers to rotation and the length of the central C=C partial double bonds, the push-pull alkenes could be classified with respect to the amount of hydrogen bonding present, the extent of donor-acceptor interactions (the push-pull effect), and the level of steric hindrance within the molecules. Finally, by means of NBO analysis of a set of model push-pull alkenes (acceptors: -C identical with N, -CH=O, and -CH=S; donors: S, O, and NH), the occupation numbers of the bonding pi orbitals of the central C=C partial double bond were shown to quantitatively describe the acceptor powers of the substituents and the corresponding occupation numbers of the antibonding pi orbital the donor powers of the substituents. Thus, for the first time an estimation of both the acceptor and the donor properties of the substituents attached to the push-pull double bond have been separately quantified. Furthermore, both the balance between strong donor/weak acceptor substituents (and vice versa) and the additional influences on the barriers to rotation (hydrogen bonding and steric hindrance in the GSs and TSs) could be differentiated.  相似文献   

17.
Infrared multiple-photon dissociation spectroscopy has been used to record vibrational spectra of charged copper-resveratrol complexes in the 3500-3700 cm(-1) and 1100-1900 cm(-1) regions. Minimum energy structures have been determined by density functional theory calculations using plane waves and pseudopotentials. In particular, the copper(I)-resveratrol complex presents a tetra-coordinated metal bound with two carbon atoms of the alkenyl moiety and two closest carbons of the adjoining resorcinol ring. For these geometries vibrational spectra have been calculated by using linear response theory. The good agreement between experimental and calculated IR spectra for the selected species confirms the overall reliability of the proposed geometries.  相似文献   

18.
The catalytic activity both of cationic [(XDPP)Au][X] (XDPP = bis-2,5-diphenylphosphole xantphos X = BF(4)) and of the isolated gold hydride complex [(XDPP)(2)Au(2)H][OTf] in the dehydrogenative silylation process is presented. A parallel theoretical study using density functional theory revealed a mechanism involving the counter anion as a co-catalyst, which was experimentally confirmed by testing various counterions (X = OTf, NTf(2), PF(6)). Finally, a "Au(2)H(+)" species was determined as the intermediate during the catalytic cycle, which correlates well with the experimental findings on the first example of catalytic activity of an isolated "Au-H" complex.  相似文献   

19.
J Fang  A Walshe  L Maron  RJ Baker 《Inorganic chemistry》2012,51(16):9132-9140
A comprehensive computational study on the ring-opening polymerization of propylene oxide catalyzed by uranyl chloride [UO(2)Cl(2)(THF)(3)] and the uranyl aryloxide [UO(2)(OAr)(2)(THF)(2)] (Ar = 2,6-(t)Bu(2)C(6)H(3)) is reported. The initiation and propagation steps have been probed and significant differences between the two catalysts discovered. The initiation step involving uranyl chloride is an intermolecular process because the orientation of the lone pair on the initiating chloride nucleophile is optimally oriented toward the empty σ*-antibonding orbital of the epoxide, which lowers the activation barrier by 22 kcal mol(-1). Thus, initiation is orbitally controlled. Propagation occurs through a dimeric species, and low-temperature fluorescence spectroscopy has been used to probe this experimentally. In contrast the initiation step for the uranyl aryloxide catalyzed mechanism is intramolecular because of the steric constraints imposed by the bulky substituents on the aryl ring and the fact that the lone pair on the nucleophile is able to approach the propylene oxide coordinated to the same uranium center. Thus, initiation is principally sterically controlled. Propagation is, however, intermolecular, and this can be traced to steric effects. Experimental evidence in the form of fluorescence spectroscopy and diffusion NMR has been used to explore the propagation process in solution.  相似文献   

20.
The electronic structures of HgII, NiII, CrIII, and MoV complexes with cysteine were investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and density functional theory. The covalency in the metal-sulfur bond was determined by analyzing the intensities of the electric-dipole allowed pre-edge features appearing in the XANES spectra below the ionization threshold. Because of the well-defined structures of the selected cysteine complexes, the current work provides a reference set for further sulfur K-edge XAS studies of bioinorganic active sites with transition metal-sulfur bonds from cysteine residues as well as more complex coordination compounds with thiolate ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号