首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of ionising radiation on the physico-chemical properties of disulfiram (Antabuse, Esperal, bisdiethylthiocarbamoil disulphide) has been studied by DSC, FTIR, EPR, MS, TLC and HPLC. Sterilisation was carried out in the solid state, at room temperature and normal air humidity using the electron beam of 9.96 Mev from accelerator. All the measurements were made simultaneously for the irradiated and nonirradiated substance. It has been found that the drug studied in solid phase when subjected to an electron beam corresponding to the irradiation in the doses 10–100 kGy shows the presence of free radicals (EPR), and a change in colour from white to pale green-grey that disappears after solution in water or methanol. After the irradiation with the dose of 100 kGy, its melting point and enthalpy slightly decreased. Also the content of the active substance decreases (HPLC −1.5%, UV −3.6%, iodometric titration method −2.7%) and trace amounts of the radiolysis products appear (HPLC). The substance irradiated with the doses 10–50 kGy does not show changes in the melting point, in the content and presence of the radiolysis products. The EPR results have shown that free radicals disappear after about a year and the discolouring disappears with them. The results of this study have shown that disulfiram can be subjected to sterilisation by irradiation with no deterioration of its physico-chemical properties, but a long time of storage needed to remove free radicals and discolouration questions the economic justification for this type of sterilisation.  相似文献   

2.
The effect of electron beam irradiation on the microstructure of cellulose has been investigated using positron annihilation lifetime spectroscopy (PALS) and electron paramagnetic resonance (EPR) Spectroscopy. PALS studies of irradiated cellulose samples showed that ortho-positronium (o-Ps) lifetime increases with an increase in dose up to 80 kGy and decreases at higher doses. The EPR signal of the irradiated cellulose matrix showed the presence of multiple radical sites. These results are discussed on the basis of chemical and physical changes occurring at the microscopic level in the cellulose due to irradiation.  相似文献   

3.
The effect of ionising radiation on the physico-chemical properties of salts of three alkaloids has been studied: codeine phosphate (COD), papaverine hydrochloride (PAP) and pilocarpine hydrochloride (PIL). These compounds in the solid state were irradiated with an e-beam of the energy of 9.96 MeV to achieve doses ranging from 25 to 400 kGy, and then they were subjected to organoleptic analysis, thermal analysis (differential scanning calorimetry, DSC), electron resonance (EPR) spectroscopy, scanning electron microscopy observations and X-ray diffraction study. The most informative were the results provided by the EPR and DSC methods. The EPR spectra revealed the presence of long-lived radicals whose concentration was directly proportional to the dose of irradiation for all the compounds studied. (PIL 2.14 × 1016 spin/g, COD 6.85 × 1015 spin/g, PAP 2.50 × 1014 spin/g—for the dose of 100 kGy). The DSC results revealed a decrease in the melting point by 5.9 °C for COD and by 0.8 °C for PIL after irradiation with 200 kGy, which is indicative of products of radiolysis, of which at least one is non-white, and changes the colour of the compounds. PAP, for which no decrease in the melting point and no colour change was observed and for which the concentration of free radicals was the lowest, was found to be most stable from among the compounds studied. It will probably be suitable for radiation sterilisation. The other two compounds COD and PIL show much lower radiochemical stability and should be subjected to more detailed examination to establish the mechanism of radiolysis and the possibility of radiation sterilisation. Our results have confirmed the earlier reports on high radiochemical stability of PAP, but do not confirm the resistance to ionising radiation of COD and PIL.  相似文献   

4.
The efficacy of gamma irradiation as a method of decontamination for food and herbal materials is well established. In the present study, Glycyrrhiza glabra roots were irradiated at doses 5, 10, 15, 20 and 25 kGy in a cobalt-60 irradiator. The irradiated and un-irradiated control samples were evaluated for phenolic contents, antimicrobial activities and DPPH scavenging properties. The result of the present study showed that radiation treatment up to 20 kGy does not affect the antifungal and antibacterial activity of the plant. While sample irradiated at 25 kGy does showed changes in the antibacterial activity against some selected pathogens. No significant differences in the phenolic contents were observed for control and samples irradiated at 5, 10 and 15 kGy radiation doses. However, phenolic contents increased in samples treated with 20 and 25 kGy doses. The DPPH scavenging activity significantly (p<0.05) increased in all irradiated samples of the plant.  相似文献   

5.
The interaction of UHMWPE with an electron beam in vacuum and in the presence of oxygen has been investigated. UHMWPE irradiated to various doses was examined with Electron Paramagnetic Resonance (EPR) and Fourier Transform infra-red (FTIR) spectroscopies. EPR was used to explore the nature of radicals produced in UHMWPE upon irradiation and to follow their decay as a function of time. Hydroperoxides formation and distribution throughout the samples were studied with FTIR spectroscopy.A correlation between the rate of decay of macroradicals and that of hydroperoxide formation has been proposed. Accordingly, the lifetime of secondary alkyl macroradicals in the amorphous phase of the polymer was found to range approximately from 3 to 10 h.  相似文献   

6.
Electron beam (EB) irradiation of poly(trimethylene carbonate) (PTMC), an amorphous, biodegradable polymer used in the field of biomaterials, results in predominant cross-linking and finally in the formation of gel fraction, thus enabling modification of physicochemical properties of this material without significant changes in its chemical structure. PTMC films (Mw: 167-553 kg mol−1) were irradiated with different doses using an electron accelerator. Irradiation with a standard sterilization dose of 25 kGy caused neither significant changes in the chemical composition of the polymer nor significant deterioration of its mechanical properties. Changes in viscosity-, number-, weight-, and z-average molecular weights of PTMC for doses lower than the gelation dose (Dg) as well as gel-sol analysis and swelling tests for doses above Dg indicate domination of cross-linking over degradation. EB irradiation can be considered as an effective tool for increasing the average molecular weight of PTMC and sterilization of PTMC-based biomaterials.  相似文献   

7.
The 9.50 GHz electron paramagnetic resonance (EPR) spectra of unirradiated and 60Co γ-ray irradiated cardamom (Elettaria cardamomum L. Maton, Zingiberaceae), ginger ((Zingiber officinale Rosc., Zingiberaceae), and saffron (Crocus sativus L., Iridaceae) have been investigated at room temperature. All unirradiated spices presented a weak resonance line with g-factors around free-electron ones. After γ-ray irradiation at an absorbed dose of up to 11.3 kGy, the presence of EPR spectra whose amplitude increase monotonously with the absorbed dose has been noticed with all spices. A 100 °C isothermal annealing of 11.3 kGy irradiated samples has shown a differential reduction of amplitude of various components that compose initial spectra, but even after 3.6 h of thermal treatment, the remaining amplitude represents no less then 30% of the initial ones. The same peculiarities have been noticed after 83 days storage at room temperature but after 340 days storage at ambient conditions only irradiated ginger displays a weak signal that differs from those of unirradiated sample. All these factors could be taken into account in establishing at which extent the EPR is suitable to evidence any irradiation treatment applied to these spices.  相似文献   

8.
Luminescent films containing terbium complex [Tb(acac)3(H2O)3] (acac=acetylacetonate) doped into a polycarbonate (PC) matrix were prepared and irradiated at low-dose gamma radiation with ratio of 5 and 10 kGy. The PC polymer was doped with 5% (w/w) of the Tb3+ complex. The thermal behavior was investigated by utilization of differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). Changes in thermal stability due to the addition of doping agent into the polycarbonate matrix. Based on the emission spectra of PC:5% Tb(acac)3 film were observed the characteristic bands arising from the 5D47FJ transitions of Tb3+ ion (J=0–6), indicating the ability to obtain the luminescent films. Doped samples irradiated at low dose of gamma irradiation showed a decrease in luminescence intensity with increasing of the dose.  相似文献   

9.
Polycarbonate (PC), a ductile polymer, has been found by both linear elastic fracture mechanics and impact tests to present a ductile-brittle transition, which depends on notched specimen thickness, test speed and gamma irradiation. Owing to large amounts of plastic deformation, fracture toughness measurements by these test methods are not precise. In the present communication, a better method, the Essential Work of Fracture (EWF), to assess the fracture characteristics in plane state of stress was for the first time used to evaluate the fracture toughness of PC sheets subjected to gamma irradiation dose. Three-points bend tests of sharp pre-cracked specimens with different ligament lengths were 340 kGy gamma irradiated. EWF results showed that the total fracture work increased linearly with length for both non-irradiated and gamma irradiated conditions. A significant decrease in EWF fracture toughness was associated with brittleness promoted by gamma irradiation. This brittleness was also confirmed by macro and microscopy (SEM) evidence.  相似文献   

10.
In this study, the simple and effective surface modification of polymers through ion irradiation is described to improve metal-to-polymer adhesion. The surface of polymer films was irradiated with 150 keV Xe+ ions at various fluences, and copper (Cu) was then deposited onto the surface-modified polymer films. The surface properties of the modified films were investigated in terms of their wettability, chemical composition, and surface morphology. The metal-to-polymer adhesion strength was estimated using a nano-indenter. As a result, the surface environment of the polymer films was physiochemically changed by ion irradiation, which could have a significant effect on the metal-to-polymer adhesion. The irradiated polymer films exhibited a higher adhesion strength than the control film, and the strength depended on the fluence. The maximum adhesion strength (8.45 mN) of the Cu deposited on the irradiated PEN films was obtained at a fluence of 5×1014 ions/cm2.  相似文献   

11.
Food packaging polymers, polystyrene (PS), polycarbonate (PC), polyamide-6 (PA-6), and polyvinylchloride (PVC), were irradiated with dose in the range 5–200 kGy. The quantities of corresponding monomer residues (styrene monomer, bisphenol-A, ε-caprolactam, vinyl chloride) released from target materials were analyzed using a SIM mode of GC/MSD. Styrene monomer in PS showed a slight increase from 740 to 777 ppm at 5–30 kGy and then decreased as the dose increased from 30 to 200 kGy. Bisphenol-A in PC was dose independent at the low doses, 5, 10 and 30 kGy, but its level increased from 173 to 473 ppm at 30 kGy and thereafter remained unchanged through 200 kGy. ε-Caprolactam in PA-6 was also dose independent, in the range of 5–200 kGy, but its level (122–164 ppm) was found to be higher than those (71 ppm) of non-irradiated sample. As for PVC, the quantity of vinyl chloride tended to increase from 8 to 18 ppm at 5–200 kGy.  相似文献   

12.
Electrical conductivity and dielectric parameters of the (BuA/MMA) copolymer films irradiated with 1.5 MeV electron beam (EB) have been studied. The samples were irradiated with different doses of the electron beam: 5, 10, 50, 125 and 200 kGy. The electrical conductivity of the samples was found to decrease as the irradiation dose increases. The temperature dependence of the direct current (dc) conductivity for unirradiated and irradiated samples has been obtained over a temperature range from 293 to 373 K. The activation energy values were calculated for all samples. Moreover, measurements of the dielectric constant, dielectric loss and alternating current (ac) conductivity were performed at a frequency range from 100 Hz to 5 MHz at room temperature. The results indicated that the EB irradiation has formed some traps in the energy gap, which reduce the movement of the charge carriers. Furthermore, a direct proportional relationship between the activation energy and the irradiation dose was estimated in two regions: below and above the glass transition temperature of the polymer. Dipole relaxation was observed in the samples, and the dose effect was found to shift this relaxation towards higher frequencies.  相似文献   

13.
The time stability and dose response of the free radicals produced in various types of “less-studied” mono- and disaccharides by γ-radiation is studied by EPR (Electron Paramagnetic Resonance) and UV spectrometry. The time evolution of the shape of the EPR spectra of irradiated saccharides is investigated from 5 min to 5 months after irradiation. The intensity of the stable EPR signal is studied as a function of the absorbed γ-dose in the range 0.5–20 kGy. Aqueous solutions of irradiated solid saccharides exhibit a UV absorption maximum in the range 250–290 nm. A linear dependency is found between the magnitude of the UV absorption maximum and the absorbed γ-dose. The time stability of the UV absorption maximum is also studied for every saccharide. The results are compared with those obtained for irradiated sucrose.  相似文献   

14.
The aim of this study was to evaluate the effects of photobiomodulation on the repair of induced root resorption (RR) after orthodontic tooth movement. Twenty male rats were used in this study. Forty right and left upper first molars were evaluated and divided into four groups (n = 10): negative control group (NC), no tooth movement or irradiation; positive control group (PC), induced tooth movement and root resorption; conventional treatment group (CT), force was removed after 7 days; and photobiomodulation group (PBM) after force removal molars were irradiated every 48 h for 7 days using GaAlAs diode laser (810 nm). Energy per point was 1.5 J (100 mW, 15 s, 75 J cm?2). NC and PC were euthanized on day 7; CT and PBM on day 14. Histomorphometric and immunohistochemsitry analyses showed increase in area of root resorption in all groups (P < 0.05) compared to NC. RR lacunae were larger in CT compared to PC and PBM at the compression side of the distal root. OPG was higher in PBM group (P < 0.05). PBM group showed low expression of RANKL compared to PC and CT on the tension side. PBM can potentially affect RR progression by increasing OPG expression in the compression area and decreasing number of clastic cells in the root surface.  相似文献   

15.
The effects of swift heavy ion irradiation on the structural characteristics of Polyethylene naphthalate (PEN) were studied. Samples were irradiated in vacuum at room temperature by lithium (50 MeV), carbon (85 MeV), nickel (120 MeV) and silver (120 MeV) ions with the fluence in the range of 1×1011–3×1012  ions cm−2. Ion induced changes were analyzed using X-ray diffraction (XRD), Fourier transform infra red (FT-IR), UV–visible spectroscopy, thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. Cross-linking was observed at lower doses resulting in modification of structural properties, however higher doses lead to the degradation of the investigated polymeric samples.  相似文献   

16.
The behavior of the poly(methyl methacrylate) (PMMA) under the action of gamma radiation has been sufficiently studied. In this work, we present results from melt flow index (MFI), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and electron paramagnetic resonance (EPR) of PMMA composites with hydroxyapatite (HA) and seaweed residues (SW) irradiated with gamma rays at 1.08 kGy/h. Composites of PMMA/HA and PMMA/SW with 10%, 20% and 30% of the filler were prepared. The results show an increase in the MFI values with the integral dose of radiation, being consistent with chain-scission reactions. No EPR signal was observed in pure PMMA, while in the composites, the typical EPR signal of the PMMA radicals was observed, which increased with the amount of HA or SW. When comparing the relative intensities of the EPR signals for both types of composites, a slight increase in the concentration of free radicals generated in the sample with SW respect to that of PMMA/HA composite was obtained. A decay of the total free radical concentration was observed as time elapsed.  相似文献   

17.
The effect of gamma irradiation on the content of total phenolic compounds, especially quercetin (Q), in onion (Allium cepa L.) skin was investigated. Onion skin extracts contained two predominant flavonoid compounds, Q and quercetin-4′-glucoside (Q4′G). After 10 kGy gamma irradiation, the yield of Q in the extracts increased significantly from 36.8 to 153.9 μg/ml of the extract, and the Q4′G content decreased slightly from 165.0 to 134.1 μg/ml. In addition, the total phenolic compound content also increased after irradiation at 10 kGy, from 228.0 μg/g of fresh weight to 346.6 μg/g; negligible changes (237.1–256.7 μg/g) occurred at doses of up to 5 kGy. As we expected, radical-scavenging activity was enhanced remarkably (by 88.8%) in the 10 kGy irradiated sample. A dose-dependent increase in the peak intensity of the electron paramagnetic resonance (EPR) spectra was observed in all irradiated samples, with a maximum increase at 10 kGy. The intensity relative to that of the control was 0.15, and it increased to 1.10 in 10 kGy irradiated samples. The optimum gamma irradiation dose, which is sufficient to break the chemical or physical bonds and release soluble phenols of low molecular weight in onion skin, is about 10 kGy.  相似文献   

18.
19.
This study aimed at evaluating the acceptance of MP watermelon and pineapple exposed to 1.0 and 2.5 kGy compared to non-irradiated samples. No significant differences were observed in liking between irradiated and non-irradiated samples, and also between doses of 1.0 and 2.5 kGy. Significant differences in sourness (pineapple) or sweetness (watermelon) and between intention of purchase of irradiated and non-irradiated fruits were not observed as well. Results showed that MP watermelon and pineapple could be irradiated with doses up to 2.5 kGy without significant changes in acceptability.  相似文献   

20.
The swift heavy irradiation induced changes taking place in ethylene–chlorotrifluoroethylene (E–CTFE) copolymer films were investigated in correlation with the applied doses. Samples were irradiated in vacuum at room temperature by lithium (50 MeV), carbon (85 MeV), nickel (120 MeV) and silver (120 MeV) ions with the fluence in the range of 1×1011–3×1012 ions cm?2. Structural and thermal properties of the irradiated as well as pristine E–CTFE films were studied using FTIR, UV–visible, TGA, DSC and XRD techniques. Swift heavy ion irradiation was found to induce changes in E–CTFE depending upon the applied doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号