共查询到20条相似文献,搜索用时 15 毫秒
1.
Anthony Fratiello Vicki Kubo-Anderson Rebecca A. Lee Marquis Patrick Richard D. Perrigan Tanya R. Porras Amy K. Sharp Kenneth Wong 《Journal of solution chemistry》2001,30(1):77-97
Multinuclear magnetic resonance spectroscopic studies of the trivalent lanthanide complexes with isothiocyanate have been completed for the praseodymium(III) and neodymium(III) ions. In water–acetone–Freon mixtures, at temperatures low enough to slow ligand exchange, usually –85 to –125°C for isothiocyanate, separate carbon-13 and nitrogen-15 NMR signals can be observed for free anion and NCS- in each metal–ion complex. For both metal ions, 15N NMR signals are observed for four complexes, displaced about +1500 ppm downfield from free NCS- for Pr3+ and about +2000 ppm for Nd3+. In the 13C NMR spectra, only three peaks are observed for the complexes of both metal anions, with signal overlap obscuring the resonance for the fourth complex. However, the metal ion coordination numbers, obtained by integration of the resonance signals, are comparable in the 15N and 13C spectra, approaching a maximum value of about 3. These spectral data indicate the formation of Ln(NCS)2+ through Ln(NCS)
4
1-
occurs for both lanthanides in these solvent systems, a result also observed previously for Ce3+, Sm3+, and Eu3+ in our laboratory. Attempts to study these complexes in water–methanol were unsuccessful, due to the inability to achieve low enough temperatures to slow ligand exchange sufficiently. Results for NCS- and Cl- competitive-binding studies by 35Cl NMR for both metal ions will also be described. 相似文献
2.
A. Fratiello V. Kubo-Anderson E. Bolanos R. D. Perrigan L. Saenz S. M. Stoll 《Journal of solution chemistry》1996,25(11):1071-1082
A direct, low-temperature hydrogen-1, carbon-13, and nitrogen-15 nuclear magnetic resonance study of lutetium(III)-isothiocyanate complex formation in aqueous solvent mixtures has been completed. At –100°C to –120°C in water-acetone-Freon mixtures, ligand exchange is slowed sufficiently to permit the observation of separate1H,13C, and15N NMR signals for coordinated and free water and isothiocyanate ions. In the13C and15N spectra of NCS–, resonance signals for five complexes are observed over the range of concentrations studied. The13C chemical shifts of complexed NCS– varied from –0.5 ppm to –3 ppm from that of free anion. For the same complexes, the15N chemical shifts from free anion were about –11 ppm to –15 ppm. The magnitude and sign of the15N chemical shifts identified the nitrogen atom as the binding site in NCS–. The concentration dependence of the13C and15N signal areas, and estimates of the fraction of anion bound at each NCS–:Lu3+ mole ratio, were consistent with the formation of [(H2O)5Lu(NCS)]2+ through [(H2O)Lu(NCS)5]2–. Although proton and/or ligand exchange and the resulting bulk-coordinated signal overlap prevented accurate hydration number measurements, a good qualitative correlation of the water1H NMR spectral results with those of13C and15N was possible. 相似文献
3.
A. Fratiello V. Kubo-Anderson A. Adanalyan E. L. Bolanos J. V. Ortega R. D. Perrigan L. Saenz 《Journal of solution chemistry》1995,24(12):1249-1263
A hydrogen-1, carbon-13, and nitrogen-15 NMR study of magnesium(II)-isothiocyanate complexation in aqueous mixtures has been completed. At temperatures low enough to slow proton and ligand exchange, separate1H,13C, and15N NMR signals are observed for coordinated and bulk water molecules and anions. The1H NMR spectra reveal signals for the hexahydrate and the mono-through triisothiocyanato complexes, as well as two small signals attributed to [Mg(H2O)5(OH)]1+ and [Mg(H2O)4(OH)(NCS)]. Accurate hydration numbers were obtained from signal area integrations at each NCS– concentration. In the15N NMR spectra, signals also were observed for the mono-through triisothiocyanato complexes, and a small signal believed to be due to [Mg(H2O)4(OH)(NCS)]. Coordination number contributions for NCS– were measured from these spectra and when combined with the hydration numbers they totalled essentially six at each anion concentration. Signals for [Mg(H2O)5(NCS)]1+ through [Mg(H2O)3(NCS)3]1– also were observed in the13C NMR spectra and the area evaluations were comparable to the15N NMR results. An analysis of the magnitude and sign of the coordinated NCS– chemical shifts identified the nitrogen atom as the anion binding site. All spectra indicated [Mg(H2O)5(NCS)]1+ and [Mg(H2O)4(NCS)2] were the dominat isothiocyanato complexes over the entire range of anion concentrations. The inability to detect evidence for complexes higher than the triisothiocyanato reflects the competitive binding ability of water molecules and perhaps the decreased electrostatic interaction between NCS– and negatively charged higher complexes. 相似文献
4.
Anthony Fratiello Vicki Kubo-Anderson Deborah J. Lee Tai Mao Kwok Ng Scott Nickolaisen Richard D. Perrigan Victor San Lucas Wayne Tikkanen Annie Wong Kenneth Wong 《Journal of solution chemistry》1998,27(4):331-359
A study of zinc(II) and cadmium(II) complexes with isothiocyanate ion has been completed, using a low-temperature, multinuclear magnetic resonance technique that permits the observation of separate resonance signals for bound and free ligand, and Cd(II) metal ion. The Zn2+–NCS– complexes were studied by 1H, 13C, and 15N NMR spectroscopy. In the 1H spectra, the intensity of the coordinated water signal, corresponding to a Zn(II) hydration number of six in the absence of NCS–, decreases dramatically as this anion is added, indicating the complexing process involves more than a simple 1:1 ligand replacement. The 13C and 15N NMR spectra reveal signals for four species, most reasonably assigned to a series of tetrahedrally coordinated Zn2+–NCS– complexes. In the Cd2+–NCS– solution spectra, the 13C and 15N signals for four complexes also are observed and they are three line patterns, corresponding to a doublet from 113Cd J-coupling, and a dominant central peak, resulting from bonding to magnetically inactive Cd isotopes. The 113Cd spectra, showing signals for four complexes, correlate well in all respects with the 13C and 15N results, including coupling in specific cases. The spectral results for both metal ions reflect binding at the nitrogen atom of NCS–, with the complexes changing from an octahedral to a tetrahedral configuration when doing so. Confirming evidence for these conclusions also was provided by several infrared measurements of these metal–ion systems. 相似文献
5.
Pazderski L Tousek J Sitkowski J Kozerski L Marek R Szłyk E 《Magnetic resonance in chemistry : MRC》2007,45(1):24-36
Au(III), Co(III) and Rh(III) chloride complexes with pyridine (py), 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) of the general formulae [M1LCl3], trans-[M2L4Cl2]+, mer-[M2L3Cl3], [M1(LL)Cl2]+, cis-[M2(LL)2Cl2]+, where M1=Au; M2=Co, Rh; L=py; LL=bpy, phen, were studied by 1H--13C HMBC and 1H--15N HMQC/HSQC. The 1H, 13C and 15N coordination shifts (the latter from ca-78 to ca-107 ppm) are discussed in relation to the type of metal, electron configuration, coordination sphere geometry and the type of ligand. The 13C and 15N chemical shifts were also calculated by quantum-chemical NMR methods, which reproduced well the experimental tendencies concerning the coordination sphere geometry and the ligand type. 相似文献
6.
A. Fratiello V. Kubo-Anderson S. Azimi F. Laghaei R. D. Perrigan F. Reyes 《Journal of solution chemistry》1992,21(10):1015-1033
A study of contact ion-pair formation between the neodymium (III) and nitrate ions in aqueous solvent mixtures has been carried out by a direct, low temperature, nitrogen-15 (15N) nuclear magnetic resonance (NMR) technique. At low temperatures, –90 to –120°C ligand exchange is slow enough to permit the observation of15N NMR signals for uncomplexed nitrate ion, and this anion in the primary solvation shell of Nd(III). In aqueous mixtures with inert acetone and Freon-12, resonance signals for Nd(NO3)2+, Nd(NO3)
2
1+
, and two higher complexes are observed. Signal areas indicate these additional species are possibly a combination of the tetra-, penta-, and hexanitrato complexes, but not the trinitrato. In water-methanol, a medium of higher dielectric constant, complexation is much less and signals only for the mono-and dinitrato complexes are observed. The effect of solvent on complexation is demonstrated more clearly by a series of measurements in water-methanol-acetone mixtures. 相似文献
7.
A. Fratiello V. Kubo-Anderson S. Azimi E. Marinez D. Matejka R. Perrigan B. Yao 《Journal of solution chemistry》1991,20(9):893-903
The extent of inner-shell ion-pair formation of Er3+ with nitrate ion in aqueous mixtures has been studied by nitrogen-15 (15N) NMR spectroscopy. At low temperature, exchange is slow enough to permit the direct observation of15N signals for nitrate ions in the Er3+ solvation shell and in bulk medium. In water-acetone mixtures,15N NMR signals for the mono-and bis complexes are observed at low nitrate to Er3+ mole ratios, but only the bis complex is evident at higher anion concentrations. No spectral evidence for the tris complex was seen at any nitrate concentration. In water-methanol-acetone mixtures, signals for the mono and bis complexes persist even at higher nitrate concentrations, indicating a reduced tendency to ion-pair with increasing dielectric constant. Preliminary15N NMR results are presented for the nitrate complexes of other paramagnetic lanthanide ions. 相似文献
8.
1H NMR assignment, including the values of delta(H) and J(H,H) for the cyclopropane moiety, and 13C NMR and 15N NMR spectral data for ciprofloxacin are presented. 相似文献
9.
A. Fratiello V. Kubo-Anderson E. Bolanos O. Chavez J. Ortega R. D. Perrigan F. Reyes L. Saenz S. M. Stoll T. Thompson 《Journal of solution chemistry》1996,25(4):345-367
A direct, low-temperature nuclear magnetic resonance spectroscopic study of europium(III)-nitrate contact ion-pairing has been completed, and preliminary results for europium(III)-isothiocyanate have been obtained. In water-acetone-Freon mixtures, at –110°C to –120°C, four15N NMR signals are observed for coordinated nitrate ion. Area evaluations of the signals and their concentration dependence indicate the formation of Eu(NO3)2+, Eu(NO3)
2
1+
, and two higher complexes, possibly the tetra-, with either the penta-or hexanitrato. This correlates well with similar15N NMR results obtained for Ce(III), Pr(III), Nd(III), and Sm(III). As a result of a higher dielectric constant, complex formation is significantly less in water-methanol mixtures, wheein only three complexes form with Eu(NO3)
2
1+
dominating at the highest anion concentrations. Competitive complexing experiments in water-methanol also were made by35Cl NMR chemical shift and linewidth measurements, as well as15N NMR. Initial experiments with the Eu3+-NCS– system show four coordinated anion signals, displaced from the bulk anion peak by about –250 ppm and –2,500 ppm in the13C and15N NMR spectra, respectively. Area evaluations are consistent with the presence of Eu(NCS)2+ through Eu(NCS)
4
1-
in these solutions. A consideration of the chemical shifts identified the nitrogen atom as the site of binding in the NCS–. A discussion of these preliminary results, as well as those for several other metal-ions, will be presented. 相似文献
10.
Leszek Pazderski Jaromír Toušek Jerzy Sitkowski Kateřina Maliňáková Lech Kozerski Edward Szłyk 《Magnetic resonance in chemistry : MRC》2009,47(3):228-238
1H, 13C and 15N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with picolines, [Au(PIC)Cl3], trans‐[Pd(PIC)2Cl2], trans/cis‐[Pt(PIC)2Cl2] and [Pt(PIC)4]Cl2, were performed. After complexation, the 1H and 13C signals were shifted to higher frequency, whereas the 15N ones to lower (by ca 80–110 ppm), with respect to the free ligands. The 15N shielding phenomenon was enhanced in the series [Au(PIC)Cl3] < trans‐[Pd(PIC)2Cl2] < cis‐[Pt(PIC)2Cl2] < trans‐[Pt(PIC)2Cl2]; it increased following the Pd(II) → Pt(II) replacement, but decreased upon the trans → cis‐transition. Experimental 1H, 13C and 15N NMR chemical shifts were compared to those quantum‐chemically calculated by B3LYP/LanL2DZ + 6‐31G**//B3LYP/LanL2DZ + 6‐31G*. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
11.
A. Fratiello V. Kubo-Anderson E. Bolanos O. Chavez F. Laghaei J. V. Ortega R. D. Perrigan F. Reyes 《Journal of solution chemistry》1994,23(9):1019-1047
The extent of inner-shell, contact ion-pairing between samarium(III)-nitrate and in a preliminary manner, samarium(III)-isothiocyanate, has been determined by a direct, low-temperature, multinuclear magnetic resonance technique. In water-acetone mixtures containing Freon-12 or Freon-22, the slow exchange condition is achieved at –110 to –120°C, permitting the observation of15N NMR resonance signals for bulk and coordinated nitrate. In these mixtures, signals are observed for Sm(NO3)2+, Sm(NO3)
2
+
, and two higher complexes, possibly the tetranitrato with either the penta-or hexanitrato.1H NMR signals for bound water molecules in these mixtures were observed, but accurate hydration numbers can not yed be determined. In anhydrous or aqueous methanol mixtures,15N NMR signals for only three complexes are observed, with the dinitrato clearly dominating. Using15N and35Cl NMR chemical shift and linewidth measurements, the superior complexing ability of nitrate compared to perchlorate and chloride, was demonstrated. Successful preliminary13C and15N NMR measurements of Sm3+-NCS– interactions in water-acetone-Freon-22 mixtures also have been made. The13C NMR spectra reveal signals for five complexes, presumably Sm(NCS)2+ through Sm(NCS)
5
2–
. In the15N NMR spectra, signals for only three complexes are observed (the result of insufficient spectral resolution.) displaced about +240 ppm from bulk anion. 相似文献
12.
A. Fratiello V. Kubo-Anderson D. Lee R. Perrigan K. Wong 《Journal of solution chemistry》1998,27(7):581-600
Multinuclear magnetic resonance studies of trivalent lanthanide inner-shell ion-pairing with nitrate and isothiocyanate are continuing. For NCS– solutions in water–acetone–Freon mixtures at low temperature, generally –100 to –125°C, ligand exchange is slow enough to permit the observation of 13C and 15N NMR signals for coordinated and free anions. For samariuni(III) solutions, four coordinated NCS–signals, displaced about +35 ppm and +250 ppm from free anion, are observed in the 13C and 15N NMR spectra, respectively. The 13C and 15N NMR data are complementary, showing a signal area concentration dependence and measured coordination numbers consistent with the formation of Sm(NCS)2+ through Sm(NCS)
4
1
. The coordination numbers reach a maximum of about three moles of NCS– per mole of Sm(III) with both nuclides, a result confirmed by spectral appearance showing the dominance of Sm(NCS)3 at the highest concentration studied. An analysis of the chemical shifts indicates that binding occurs at the nitrogen atom of NCS–. In water–methanol, due to the higher dielectric constant of such mixtures, coordination was less extensive. A competitive binding study with Ci– by 35Ci NMR demonstrated conclusively the superior coordinating ability of NCS–. 相似文献
13.
Leszek Pazderski Jaromír Toušek Jerzy Sitkowski Lech Kozerski Edward Szłyk 《Magnetic resonance in chemistry : MRC》2009,47(8):658-665
1H, 13C and 15N nuclear magnetic resonance studies of gold(III), palladium(II) and platinum(II) chloride complexes with phenylpyridines (PPY: 4‐phenylpyridine, 4ppy; 3‐phenylpyridine, 3ppy; and 2‐phenylpyridine, 2ppy) having the general formulae [Au(PPY)Cl3], trans‐/cis‐[Pd(PPY)2Cl2] and trans‐/cis‐[Pt(PPY)2Cl2] were performed and the respective chemical shifts (δ, δ and δ) reported. 1H, 13C and 15N coordination shifts (i.e. differences between chemical shifts of the same atom in the complex and ligand molecules: , , ) were discussed in relation to the type of the central atom (Au(III), Pd(II) and Pt(II)), geometry (trans‐/cis‐) and the position of a phenyl group in the pyridine ring system. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
14.
Wolfgang Holzer Gernot A. Eller Barbara Datterl Daniela Habicht 《Magnetic resonance in chemistry : MRC》2009,47(7):617-624
NMR spectroscopic studies are undertaken with derivatives of 2‐pyrazinecarboxylic acid. Complete and unambiguous assignment of chemical shifts (1H, 13C, 15N) and coupling constants (1H,1H; 13C,1H; 15N,1H) is achieved by combined application of various 1D and 2D NMR spectroscopic techniques. Unequivocal mapping of 13C,1H spin coupling constants is accomplished by 2D (δ,J) long‐range INEPT spectra with selective excitation. Phenomena such as the tautomerism of 3‐hydroxy‐2‐pyrazinecarboxylic acid are discussed. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
15.
Leszek Pazderski Tomasz Pawlak Jerzy Sitkowski Lech Kozerski Edward Szłyk 《Magnetic resonance in chemistry : MRC》2009,47(11):932-941
1H, 13C, 15N and 195Pt NMR studies of gold(III) and platinum(II) chloride organometallics with N(1),C(2′)‐chelated, deprotonated 2‐phenylpyridine (2ppy*) of the formulae [Au(2ppy*)Cl2], trans(N,N)‐[Pt(2ppy*)(2ppy)Cl] and trans(S,N)‐[Pt(2ppy*)(DMSO‐d6)Cl] (formed in situ upon dissolving [Pt(2ppy*)(µ‐Cl)]2 in DMSO‐d6) were performed. All signals were unambiguously assigned by HMBC/HSQC methods and the respective 1H, 13C and 15N coordination shifts (i.e. differences between chemical shifts of the same atom in the complex and ligand molecules: Δ1Hcoord = δ1Hcomplex ? δ1Hligand, Δ13Ccoord = δ13Ccomplex ? δ13Cligand, Δ15Ncoord = δ15Ncomplex ? δ15Nligand), as well as 195Pt chemical shifts and 1H‐195Pt coupling constants discussed in relation to the known molecular structures. Characteristic deshielding of nitrogen‐adjacent H(6) protons and metallated C(2′) atoms as well as significant shielding of coordinated N(1) nitrogens is discussed in respect to a large set of literature NMR data available for related cyclometallated compounds. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
16.
Leszek Pazderski Tomasz Pawlak Jerzy Sitkowski Lech Kozerski Edward Szłyk 《Magnetic resonance in chemistry : MRC》2010,48(6):417-426
1H, 13C and 15N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with dimethylpyridines (lutidines: 2,3‐lutidine, 2,3lut; 2,4‐lutidine, 2,4lut; 3,5‐lutidine, 3,5lut; 2,6‐lutidine, 2,6lut) and 2,4,6‐trimethylpyridine (2,4,6‐collidine, 2,4,6col) having general formulae [AuLCl3], trans‐[PdL2Cl2] and trans‐/cis‐[PtL2Cl2] were performed and the respective chemical shifts (δ1H, δ13C, δ15N) reported. The deshielding of protons and carbons, as well as the shielding of nitrogens was observed. The 1H, 13C and 15N NMR coordination shifts (Δ1Hcoord, Δ13Ccoord, Δ15Ncoord; Δcoord = δcomplex ? δligand) were discussed in relation to some structural features of the title complexes, such as the type of the central atom [Au(III), Pd(II), Pt(II)], geometry (trans‐ or cis‐), metal‐nitrogen bond lengths and the position of both methyl groups in the pyridine ring system. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
17.
Pascal Palmas Coralie Nyffenegger Eric Pasquinet Gérald Guillaumet 《Magnetic resonance in chemistry : MRC》2009,47(9):752-756
Mesomeric heteropentalene betaines are conjugated fused polyheterocyclic structures that represent interesting intermediates for organic synthesis. Five such structures, containing at least four nitrogen atoms and various substituents, have been characterized by 1H, 13C and 15N NMR. We report, apparently for the first time, nitrogen NMR data and coupling information on such systems. Inter‐ring long‐range correlations across five bonds with 15N (5JHN) and up to seven bonds with 13C (6JHC and 7JHC) were observed in HSQC experiments. The incorporation of an electron‐withdrawing substituent such as NO2 was observed to cause an increase in the magnitude of the remote couplings and deshielding of nearby protons, carbons and on all nitrogen atoms of the structure, including remote ones situated on other cycles. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
18.
Alan R. Katritzky Bahaa El‐Dien M. El‐Gendy Bogdan Draghici Dmytro Fedoseyenko Aziz Fadli Eric Metais 《Magnetic resonance in chemistry : MRC》2010,48(5):397-402
1H, 13C, and 15N NMR chemical shifts for pyridazines 4–22 were measured using 1D and 2D NMR spectroscopic methods including 1H? 1H gDQCOSY, 1H? 13C gHMQC, 1H? 13C gHMBC, and 1H? 15N CIGAR–HMBC experiments. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
19.
Silvana Casati Ada Manzocchi Roberta Ottria Pierangela Ciuffreda 《Magnetic resonance in chemistry : MRC》2010,48(9):745-748
The complete 1H, 13C and 15N NMR signals assignments of some new isopentenyladenosine analogues were achieved using one‐ and two‐dimensional experiments (gs‐NOESY, gs‐HMQC and gs‐HMBC). Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
20.
Pazderski L Tousek J Sitkowski J Kozerski L Szłyk E 《Magnetic resonance in chemistry : MRC》2007,45(12):1059-1071
1H, 13C, and 15N NMR studies of platinide(II) (M=Pd, Pt) chloride complexes with quinolines (L=quinoline-quin, or isoquinoline-isoquin; LL=2,2'-biquinoline-bquin), having the general formulae trans-/cis-[ML2Cl2] and [M(LL)Cl2], were performed and the respective chemical shifts (delta1H, delta13C, delta15N) reported. 1H coordination shifts of various signs and magnitudes (Delta1Hcoord=delta1Hcomplex-delta1Hligand) are discussed in relation to the changes of diamagnetic contribution to the relevant 1H shielding constants. The comparison to the literature data for similar complexes containing auxiliary ligands other than chlorides exhibited a large dependence of delta1H parameters on electron density variations and ring-current effects (inductive and anisotropic phenomena). The influence of deviations from planarity, concerning either MN2Cl2 chromophores or azine ring systems, revealed by the known X-ray structures of [Pd(bquin)Cl2] and [Pt(bquin)Cl2], is discussed in respect to 1H NMR spectra. 15N coordination shifts (Delta15Ncoord=delta15Ncomplex-delta15Nligand) of ca. 78-100 ppm (to lower frequency) are attributed mainly to the decrease of the absolute value of paramagnetic contribution in the relevant 15N shielding constants, this phenomenon being noticeably dependent on the type of a platinide metal and coordination sphere geometry. The absolute magnitude of Delta15Ncoord parameter increased by ca 15 ppm upon Pd(II)-->Pt(II) replacement but decreased by ca. 15 ppm following trans-->cis transition. Experimental 1H, 13C, 15N NMR chemical shifts are compared to those quantum-chemically calculated by B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*, both in vacuo and in CHCl3 or DMF solution. 相似文献