首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
The use of 8,8′-diaryl-substituted 3,3′-biisoquinolines allows the construction of new multi-component assemblies that are inaccessible with the 2,9-diaryl-substituted 1,10-phenanthroline ligands previously developed by the Sauvage group. This is due to the sterically non-hindering nature of the new chelates, which makes three-component entanglements around octahedral metal centres such as iron(II), cobalt(II) and ruthenium(II) readily possible. Among the newly synthesized molecular assemblies are [3]rotaxanes and [3]pseudorotaxanes in which two molecular strings pass through a single macrocycle, as well as molecular shuttles that exhibit greatly improved shuttling kinetics when compared to previously investigated molecular machines that are based on copper(I)/copper(II) redox chemistry.  相似文献   

2.
Synthesis and characterization of four Mo(VI) complexes of a diprotic tridentate ONS chelating ligand (H2L) containing the rather elusive [MoVIOS]2+ core is reported. These [MoVIOSL] complexes are obtained from their corresponding [MoVIO2L] precursors using a combination of PPh3 and PPh3S. This process of oxo-abstraction and sulfido-inclusion affected by PPh3–PPh3S is reported for the first time and may be considered as a general method of converting [MoVIO2L] complexes to the corresponding [MoVIOSL] complexes. Direct structural characterization of these complexes could not be done due to the ease of solvolysis of these oxosulfidomolybdenum(VI) complexes to the corresponding dioxomolybdenum(VI) analogues. However, the structure of these [MoVIOSL] complexes could be reasonably surmised from the corresponding structurally characterized [MoVIO2L] complexes. Points of attachment of the potentially pentadentate but functionally tridentate ONS chelating ligands to [MoVIOS]2+ are located mainly through analysis of IR and UV-Vis spectral data and comparison with corresponding [MoVIO2L] complexes of known structure. Conditions under which solvolysis of [MoVIOS]2+ to the [MoVIO2]2+ core is significantly retarded have been identified and make us hopeful of obtaining single crystals of [MoVIOSL].  相似文献   

3.
[NEt(4)](2)[Re(CO)(3)Br(3)] reacts with 2-acetylpyridine phenylthiosemicarbazone (HL(1)) and 2-pyridine formamide thiosemicarbazone (HL(2)) under formation of air-stable, neutral rhenium(I) complexes of the compositions [Re(CO)(3)(L(1)-N,N,S)] and [Re(CO)(3)Br(HL(2)-N,N)]. Spectroscopic studies and X-ray crystallography show that the potentially tridentate thiosemicarbazones adopt unusual coordination modes. Whereas HL(1) deprotonates and binds to the metal in a nonplanar fashion, HL(2) acts as neutral N,N donor ligand. The bond lengths inside the chelate rings are almost uninfluenced by the overall bonding situation.  相似文献   

4.
The investigation presents new synthetic methods for the generation of tripodal P/S ligands by reactions of metal alkoxides and carboxylates with the organoperthiophosphinic acid anhydride Lawesson's reagent. Four new transition-metal complexes containing various tripodal ligand sets were synthesised and characterised.  相似文献   

5.
《Polyhedron》1987,6(4):729-740
Recent synthetic and structural studies on multiply bonded complexes of stoichiometry M2X4[μ-R2P(CH2)nPR2]2 (M = Mo, W or Re; X = Cl, Br or I; R = Me, Et or Ph; n = 1 or 2), the ditungsten(III) hydride W2(μ-H)(μ-Cl)Cl4(μ-dppm)2 (dppm = Ph2PCH2PPh2), Re2Cl4(μ-dmpm)3 (dmpm = Me2PCH2PMe2), and M2(μ-Cl)2 Cl4(μ-R2PCH2PR2)2 (R = Me or Ph) are surveyed. The first examples of multiply bonded complexes that contain the Ph2PCH  CHPPh2 ligand (abbreviated dppee) are described, viz. the α- and β-isomers of M2X4(dppee)2 (M = Mo or Re, X = Cl or Br). The reactions of Re2X4(dppm)2 (X = Cl or Br) with RNC, RCN and CO ligands that yield complexes in which a metal-metal multiple bond is preserved are reviewed.  相似文献   

6.
In the Buchwald-Hartwig reaction between HIPTBr (HIPT = 3,5-(2,4,6-i-Pr3C6H2)2C6H3 = hexaisopropylterphenyl) and (H2NCH2CH2)3N, it is possible to obtain a 65% isolated yield of (HIPTNHCH2CH2)2NCH2CH2NH2. A second coupling then can be carried out to yield a variety of "hybrid" ligands, (HIPTNHCH2CH2)2NCH2CH2NHAr, where Ar = 3,5-Me2C6H3, 3,5-(CF3)2C6H3, 3,5-(MeO)2C6H3, 3,5-Me2NC5H3, 3,5-Ph2NC5H3, 2,4,6-i-Pr3C6H2, or 2,4,6-Me3C6H2. The hybrid ligands may be attached to Mo to yield [hybrid]MoCl species. From the monochloride species, a variety of other species such as [hybrid]MoN, {[hybrid]MoN2}Na, and {[hybrid]Mo(NH3)}+ can be prepared. [Hybrid]MoN2 species were prepared through oxidation of {[hybrid]MoN2}Na species with ZnCl2, but they could not be isolated. [Hybrid]Mo=N-NH species could be observed as a consequence of the protonation of {[hybrid]MoN2}- species, but they too could not be isolated as a consequence of a facile decomposition to yield dihydrogen and [hybrid]MoN2 species. Attempts to reduce dinitrogen catalytically led to little or no ammonia being formed from dinitrogen. The fact that no ammonia was formed from dinitrogen in the case of Ar = 3,5-Me2C6H3, 3,5-(CF3)2C6H3, or 3,5-(MeO)2C6H3 could be attributed to a rapid decomposition of intermediate [hybrid]Mo=N-NH species in the catalytic reaction, a decomposition that was shown in separate studies to be accelerated dramatically by 2,6-lutidine, the conjugate base of the acid employed in the attempted catalytic reduction. X-ray structures of [(HIPTNHCH2CH2)2NCH2CH2N{3,5-(CF3)2C6H3}]MoCl and [(HIPTNHCH2CH2)2NCH2CH2N(3,5-Me2C6H3)]MoN2}Na(THF)2 are reported.  相似文献   

7.
Sterically hindering bidentate chelates, such as 2,9‐diphenyl‐1,10‐phenanthroline, form entwined complexes with copper(I) and other tetrahedrally coordinated transition‐metal centres. To prepare octahedral complexes containing two entwined tridentate ligands and thus apply a strategy similar to that used for making catenanes with tetrahedral metal centres, the use of the classical terpy ligand (terpy=2,2′:6′,2′′‐terpyridine) appears to be attractive. In fact, 6,6′′‐diphenyl‐2,2′:6′,2′′‐terpyridine (dp‐terpy) is not appropriate due to strong “pinching” of the organic backbone by coordination to the metal and thus stable entwined complexes with this ligand cannot be obtained. Herein, we report the synthesis and coordination properties of a new family of tridentate ligands, the main features of which are their endocyclic nature and non‐sterically hindering character. The coordinating fragment consists of two 8′‐phenylisoquinolin‐3′‐yl groups attached at the 2 and 6 positions of a pyridine nucleus. Octahedral complexes containing two such entangled ligands around an octahedral metal centre, such as FeII, RuII or CoIII, are highly stable, with no steric congestion around the metal. By using functionalised ligands bearing terminal olefins, double ring‐closing metathesis leads to [2]catenanes in good yield with FeII or CoIII as the templating metal centre. The X‐ray crystallography structures of the FeII precursor and the FeII catenane are also reported. These show that although significant pinching of the ligand is observed in both FeII complexes, the system is very open and no steric constraints can be detected.  相似文献   

8.
《Tetrahedron: Asymmetry》1998,9(18):3191-3202
The synthesis and coordination chemistry of a mixed pyridine–oxazoline bidentate ligand, 2-(2-oxazolin-2-ylmethyl)pyridine, are described. Crystal structure data along with variable temperature NMR studies establish the structures of achiral and chiral versions of this ligand system. In addition, the catalytic asymmetric hydrosilylation of acetophenone has been examined.  相似文献   

9.
Aryl bromides react with (H(2)NCH(2)CH(2))(3)N in a reaction catalyzed by Pd(2)(dba)(3) in the presence of BINAP and NaO-t-Bu to give the arylated derivatives (ArylNHCH(2)CH(2))(3)N [Aryl = C(6)H(5) (1a), 4-FC(6)H(4) (1b), 4-t-BuC(6)H(4) (1c), 3,5-Me(2)C(6)H(3) (1d), 3,5-Ph(2)C(6)H(3) (1e), 3,5-(4-t-BuC(6)H(4))(2)C(6)H(3) (1f), 2-MeC(6)H(4) (1g), 2,4,6-Me(3)C(6)H(2) (1h)]. Reactions between (ArNHCH(2)CH(2))(3)N (Ar = C(6)H(5), 4-FC(6)H(4), 3,5-Me(2)C(6)H(3), and 3,5-Ph(2)C(6)H(3)) and Mo(NMe(2))(4) in toluene at 70 degrees C lead to [(ArNHCH(2)CH(2))(3)N]Mo(NMe(2)) complexes in yields ranging from 64 to 96%. Dimethylamido species (Ar = 4-FC(6)H(4), 3,5-Me(2)C(6)H(3)) could be converted into paramagnetic [(ArNHCH(2)CH(2))(3)N]MoCl species by treating them with 2,6-lutidinium chloride in tetrahydrofuran (THF). The "direct reaction" between 1a-f and MoCl(4)(THF)(2) in THF followed by 3 equiv of MeMgCl yielded [(ArNHCH(2)CH(2))(3)N]MoCl species (3a-f) in high yield. If 4 equiv of LiMe instead of MeMgCl are employed in the direct reaction, then [(ArNHCH(2)CH(2))(3)N]MoMe species are formed. Tungsten species, [(ArNHCH(2)CH(2))(3)N]WCl, could be prepared by analogous "direct" methods. Cyclic voltammetric studies reveal that MoCl complexes become more difficult to reduce as the electron donating ability of the [ArylNCH(2)CH(2))(3)N]3- ligand increases, and the reductions become less reversible, consistent with ready loss of chloride from ([(ArNHCH(2)CH(2))(3)N]MoCl)(-). Tungsten complexes are more difficult to reduce, and reductions are irreversible on the CV time scale.  相似文献   

10.
Gamer MT  Roesky PW 《Inorganic chemistry》2004,43(16):4903-4906
Bis(diphosphanylamide) complexes of the lanthanides have been synthesized. Two approaches to obtain these compounds are shown. Reaction of YbCl3 with a slight excess of [K(THF)n][N(PPh2)2] gives [((Ph2P)2N)2 YbCl(THF)2], which can be further reacted with K(C5Me5) to give the corresponding pentamethylcyclopentadienyl complex [((Ph2P)2N)2Yb(C5Me5)]. In a second approach to bis(diphosphanylamide) complexes of the lanthanides, Na(C(5)H(5)) was treated with SmCl3 to generate [(C5H5)SmCl2(THF)3] in situ. Further reaction with 2 equiv of [K(THF)n][N(PPh2)2] gave the desired complex [((Ph2P)2N)2Sm(C5H5)(THF)].  相似文献   

11.
Nickel(II) complexes of general empirical formula, NiLX·nH2O (L = deprotonated form of the Schiff base formed by condensation of N-methyl-S-methyldithiocarbazate with 2-hydroxybenzaldehyde or 5-bromo-2-hydroxybenzaldehyde; X = Cl, Br, NCS, AcO or CN; n = 0, 1) have been prepared and characterized by a variety of physico-chemical techniques. Magnetic and spectroscopic data support a square-planar structure for these complexes. The crystal structure of the [Ni(ONMeS)CN]·H2O complex (ONMeS = anionic form of the 2-hydroxybenzaldehyde Schiff base of N-methyl-S-methyldithiocarbazate) has been determined by X-ray diffraction. The complex has a distorted square-planar structure in which the Schiff base is coordinated to the nickel(II) ion as a uninegatively charged anion coordinating via the phenolic oxygen atom, the azomethine nitrogen atom and the thione sulfur atom. The fourth coordination position is occupied by a cayano ligand. The antifungal properties of the Schiff bases and their nickel(II) complexes were studied against three plant pathogenic fungi. The ligands display moderate fungitoxicities against these organisms but their nickel(II) complexes are less active than the free ligands.  相似文献   

12.
The properties of two mononuclear Ru(II) complexes formed with the extended planar ligand PHEHAT depend drastically on the chelation site by the metallic ion. When the chelation takes place on the HAT site of the ligand (case of the novel complex [Ru(phen)2(HATPHE)]2+), the emission behavior is quite similar to that of [Ru(phen)2(HAT)]2+. In contrast, when the chelation is on the phen motif of the ligand (case of [Ru(phen)2(PHEHAT)]2+), the spectroscopic (absorption and emission) and electrochemical data for the complex do not obey the linear spectroelectrochemical correlation and the emission behavior is comparable to that of the extensively studied dppz complex ([Ru(phen/bpy)2(dppz)]2+). Thus, for [Ru(phen)2(PHEHAT)]2+, the emission lifetimes and intensities as a function of temperature exhibit a maximum for nitrile solvents. However, in contrast to the dppz case, at least three different states (two emitting and one dark) participate in the deactivation with different contributions depending on the temperature. These different contributions explain the observed maximum. Moreover, the fact that the solvent is liquid or frozen also influences the nature of the luminescent species.  相似文献   

13.
The reaction between 1,2-bis[3-(3,5-dimethyl-1-pyrazolyl)-2-thiapropyl]benzene (bddf) and [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) in a 1:1 M/L ratio in CH2Cl2 or acetonitrile solution, respectively, gave the complexes trans-[MCl2(bddf)] (M = Pd(II) (1), Pt(II) (4)), and in a 2:1 M/L ratio led to [M2Cl4(bddf)] (M = Pd(II) (2), Pt(II) (5)). Treatment of 1 and 4 with AgBF4 and NaBPh4, respectively, gave the compounds [Pd(bddf)](BF4)2 (3) and [Pt(bddf)](BPh4)2 (6). When complexes 3 and 6 were heated under reflux in a solution of Et4NBr in CH2Cl2/CH3OH (1:1) for 24 h, analogous complexes to 1 and 4 with bromides instead of chlorides bonded to the metallic centre were obtained. These complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H, 1H{195Pt}, 13C{1H}, 195Pt{1H} NMR, HSQC and NOESY spectroscopies. The X-ray crystal structure of the complex [Pd(bddf)](BF4)2 · H2O has been determined. The metal atom is tetracoordinated by the two azine nitrogen atoms of the pyrazole rings and two thioether groups.  相似文献   

14.
The pseudotetrahedral complexes [Cu(NN)(DPEphos)]BF(4), where DPEphos = bis[2-(diphenylphosphino)phenyl]ether and NN = 1,10-phenanthroline (1), 2,9-dimethyl-1,10-phenanthroline (2), 2,9-di-n-butylphenanthroline (3), or two dimethylcyanamides (4), and NiCl(2)(DPEphos) (5) have been synthesized and structurally characterized by X-ray crystallography and their solution properties examined by use of a combination of cyclic voltammetry, NMR spectroscopy, and electronic absorption spectroscopy. Complexes 1-4 possess a reversible Cu(II)/Cu(I) couple at potentials upward of +1.2 V versus Ag/AgCl. Compounds 1-3 exhibit extraordinary photophysical properties. In room-temperature dichloromethane solution, the charge-transfer excited state of the dmp (dbp) derivative exhibits an emission quantum yield of 0.15 (0.16) and an excited-state lifetime of 14.3 mus (16.1 mus). Coordinating solvents quench the charge-transfer emission to a degree, but the photoexcited dmp complex 2 retains a lifetime of over a microsecond in acetone, methanol, and acetonitrile.  相似文献   

15.
From the reaction of in situ generated 1,2-di(4-tert-butylphenyl)ethylene-1,2-dithiol, 2LH2, and Na[AuCl4].2H2O in 1,4-dioxane, green brown crystals of diamagnetic [N(n-Bu)4][AuIII(2L)2] (1) were obtained. As shown by cyclic voltammetry, 1 is a member of an electron-transfer series comprising the dianion [AuII(2L)2]2-, the monoanion [AuIII(2L)2]-, the neutral species [AuIII(2L*)(2L)]0 <--> [AuIII(2L)(2L*)]0, and the monocation [AuIII(2L*)2]+. (2L*)1- represents the pi radical anion (Srad = 1/2) of the one-electron oxidized closed-shell dianion (2L)2-. Oxidation of 1 in CH2Cl2 with ferrocenium hexafluorophosphate affords green, paramagnetic microcrystals of [AuIII(2L*)(2L)] <--> [AuIII(2L)(2L*)] (2) (S = 1/2). Complexes 1 and 2 have been characterized by X-ray crystallography. Both species possess square-planar monoanions and neutral molecules, respectively. From the oxidation reaction of 1 or [N(n-Bu)4][AuIII(3L)2] with 2-3 equiv of [NO]BF4 in CH2Cl2, a green solution of [AuIII(2L*)2]+ and green microcrystals of [AuIII(3L*)2]BF4 (3) were obtained, respectively; (3L)2- represents the dianion 1,2-di(4-diphenyl)ethylene-1,2-dithiolate, and (3L*)1- is its pi radical monoanion. The electronic structures of this series of gold species have been elucidated by UV-vis, EPR spectroscopies, and DFT calculations. It is shown computationally by density functional theoretical (DFT) methods that the electronic structure of [AuIII(1L*)2]+ is best described as a singlet diradical (St = 0); the ligand mixed valency in the neutral species 2 is of class (III) (delocalized); the monoanion in 1 contains a AuIII ion and two closed-shell dianionic ligands; and the corresponding dianions [Au(L)2]2- are best described as an intermediate AuII/AuIII species with a metal-ligand delocalized SOMO (25% Au 5d, 75% 3p of four S atoms). (1L)2- is the dianion 1,2-di(phenyl)ethylene-1,2-dithiolate, and (1L*)1- is the pi radical monoanion. The neutral species [PdII(2L*)2] (4) has also been synthesized and characterized by X-ray crystallography. Its electronic structure is the same as described for [AuIII(1L*)2]+ (singlet diradical), whereas that of the monoanion [PdII(2L*)(2L)]- <--> [Pd(2L)(2L*)]- corresponds to that of the neutral gold complex 2. Anodic oxidation of the analogous monoanion [AuIII(mnt)2]-, where mnt = maleonitriledithiolate, gave the neutral complex [Au(mnt)(mnt*)] (E1/2 = 0.91 V vs Fc+/Fc). The optical and EPR spectroscopies of [Au(mnt)(mnt*)] were consistent with those observed for the corresponding di(tert-butylphenyl)ethylenedithiolate complex 2.  相似文献   

16.
The new bitopic, bis(1-pyrazolyl)methane-based ligand o-C6H4[CH2OCH2CH(pz)2]2 (L2, pz = pyrazolyl ring) is prepared from the reaction of (pz)2CHCH2OH (obtained from the reduction of (pz)2CHCOOH with BH3.S(CH3)2) with NaH, followed by the addition of alpha,alpha'-dibromo-o-xylene. The reaction of L2 with AgPF6 or AgO3SCF3 yields {o-C6H4[CH2OCH2CH(pz)2]2(AgPF6)}n or {o-C6H4[CH2OCH2CH(pz)2]2(AgO3SCF3)}n, respectively. Both compounds in the solid state have tetrahedral silver(I) centers arranged in a 1D coordination polymer network. The analogous ligand based on tris(1-pyrazolyl)methane units, o-C6H4[CH2OCH2C(pz)3]2 (L3), reacts with AgO3SCF3 to form a similar coordination polymer, {o-C6H4[CH2OCH2C(pz)3]2(AgO3SCF3)}n. In this case, each tris(pyrazolyl)methane unit in L3 adopts the kappa2-kappa0 bonding mode. Crystallization of a 3:1 mixture of AgO3SCF3 and L3 yields {o-C6H4[CH2OCH2C(pz)3]2(AgO3SCF3)2}n, in which the tris(1-pyrazolyl)methane units adopt a kappa2-kappa1 coordination mode.  相似文献   

17.
New bimetallic complexes [MTl(SC6F5)2L2Cp] (L = SC6F5, M = Mo (1a), W (1b); L = CO, M = Mo (4)) are characterised; crystal structures of 1a and 4 show unusual polydentate coordination of thallium(I) by [Mo(SC6F5)2L2Cp)] and var. temp. 19F NMR studies, supported by conductivity measurements and cation exchange, indicate restricted rotation of C6F5 groups and reversible decoordination of Tl+ in more polar solvents.  相似文献   

18.
[1,8-C10H6(NR)2]TiCl2 (3; R=SiMe3, SiiBuMe2, SiiPr3) complexes have been prepared from dilithio salts [1,8-C10H6(NR)2]Li2 (2) and TiCl4 in diethyl ether in moderate yields (60–63%). These complexes showed significant catalytic activities for ethylene polymerization and for ethylene/1-hexene copolymerization in the presence of methylaluminoxane (MAO), methyl isobutyl aluminoxane (MMAO), AliBu3– or AlEt3–Ph3CB(C6F5)4 as a cocatalyst. The catalytic activities performed in heptane (cocatalyst MMAO) were higher than those carried out in toluene (cocatalyst MAO): 709 kg-PE/mol-Ti·h could be attained for ethylene polymerization by using [1,8-C10H6(NSiiBuMe2)2]TiCl2–MMAO catalyst system.  相似文献   

19.
A series of dinuclear complexes, [Tp(R)M--M'L(n)] [Tp(iPr(2) )M--Co(CO)(4) (1; M=Ni, Co, Fe, Mn); Tp(#)M--Co(CO)(4) (1'; M=Ni, Co); Tp(#)Ni--RuCp(CO)(2) (3')] (Tp(iPr(2) )=hydrotris(3,5-diisopropylpyrazolyl)borato; Tp(#) (Tp(Me(2),4-Br))=hydrotris(3,5-dimethyl-4-bromopyrazolyl)borato), has been prepared by treatment of the cationic complexes [Tp(iPr(2) )M(NCMe)(3)]PF(6) or the halo complexes [Tp(#)M--X] with the appropriate metalates. Spectroscopic and crystallographic characterization of 1-3' reveals that the tetrahedral, high-spin Tp(R)M fragment and the coordinatively saturated carbonyl-metal fragment (M'L(n)) are connected only by a metal-metal interaction and, thus, the dinuclear complexes belong to a unique class of xenophilic complexes. The metal-metal interaction in the xenophilic complexes is polarized, as revealed by their nu(CO) vibrations and structural features, which fall between those of reference complexes: covalently bonded species [R--M'L(n)] and ionic species [M'L(n)](-). Unrestricted DFT calculations for the model complexes [Tp(H(2) )Ni--Co(CO)(4)], [Tp(H(2) )Ni--Co(CO)(3)(PH(3))], and [Tp(H(2) )Ni--RuCp(CO)(2)] prove that the two metal centers are held together not by covalent interactions, but by electrostatic attractions. In other words, the obtained xenophilic complexes can be regarded as carbonylmetalates, in which the cationic counterpart interacts with the metal center rather than the oxygen atom of the carbonyl ligand. The xenophilic complexes show divergent reactivity dependent on the properties of donor molecules. Hard (N and O donors) and soft donors (P and C donors) attack the Tp(R)M part and the ML(n) moiety, respectively. The selectivity has been interpreted in terms of the hard-soft theory, and the reactions of the high-spin species 1-3' with singlet donor molecules should involve a spin-crossover process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号