首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 60 毫秒
1.
CO2加氢直接制取二甲醚的研究   总被引:29,自引:1,他引:29  
葛庆杰  黄友梅 《分子催化》1997,11(4):297-300
CO2加氢直接制取二甲醚的研究葛庆杰黄友梅1)邱凤炎李树本(中国科学院兰州化学物理研究所兰州730000)关键词二氧化碳催化加氢二甲醚铜催化剂分类号O643.32二氧化碳在地球上含量极丰富,且随着工业的发展而日益增长.同时二氧化碳含量的日益增多,会加...  相似文献   

2.
低镍催化剂CO和CO2加氢反应的对比研究   总被引:1,自引:0,他引:1  
  相似文献   

3.
Fe—Silicalite—2催化剂表面CO2加氢反应性能的研究   总被引:3,自引:0,他引:3  
研究了Fe/Silicalite-2催化剂CO2加氢低碳烯烃反应性能,利用CO2-TPD,CO2/H2-TPSR和CO/H2-TPSR表征手段,考察了铁含量及MnO助剂对Fe/Silicalite-2催化剂CO2吸附脱附及加氢反应性能的影响,表明随铁含量增加可提高催化剂对CO2的吸附能力,有利于提高CO2加氢反应的转化率。  相似文献   

4.
锰基催化剂上CO2加氢反应性能的研究   总被引:1,自引:0,他引:1  
研究了Mn基催化上CO2的加氢反应性能,结果表明:CO2活化吸附量的增加有利于CO2转化率的提高。Mn具有较好的CO2加氢生成CO的催化活性,CuO,Fe2O3的ZnO的加入使催化剂活性得到进一步的提高;NiO的加入增加了催化剂的H2活化吸附量,从而使催化剂对CH4的选择性得到提高,同时使CO2的转化率与Ni/γ-Al2O3相比略有下降。  相似文献   

5.
用于CO2加氢的超细CuO-ZnO-SiO2催化剂   总被引:3,自引:0,他引:3  
  相似文献   

6.
在超细CuO/ZnO/SiO2催化剂体系上,对比研究了CO2和CO加氢性能,并就CO2加氢的反应机理进行了探讨。考察了接触时间和反应压力对CO2加氢的主要产物甲醇和CO分布的影响。  相似文献   

7.
Ni-Na-Y分子筛对CO_2加氢反应显示出高的CO选择性和低活性。本文用EXAFS、FTIR、EPR和XRD对Ni-Na-Y分子筛进行了表征,结果表明,在H_2还原下首先形成小的Ni原子簇,接着在催化反应过程中粒径变大,并从超笼移向外表面。结果还表明,CO选择性的高低取决于分子筛的酸性、Na~+的存在和Ni原子簇的粒径大小。在CO气氛下的预处理将提高其生成CO的活性和选择性。  相似文献   

8.
在Cu—Fe—Na/分子筛复合催化剂上CO2加氢的研究   总被引:4,自引:3,他引:1  
研究了250℃、2.0MPa压力下在Cu-Fe-Na/分子筛复合催化剂上进行的CO2催化加氢反应,考察了Cu-Fe-Na上的碱金属Na含量以及分子筛的硅铝比对CO2转化率、产物选择性的影响。  相似文献   

9.
10.
先采用均匀沉淀法制备出CuO—ZnO催化剂,然后以CuO—ZnO催化剂作为晶核采用水热合成法制备出CuO—ZnO/HZSM-5(氢型ZSM-5分子筛)复合催化剂.利用X射线衍射和氨程序升温脱附手段对复合催化剂进行表征,并应用于CO2催化加氢合成二甲醚的反应.研究结果表明,在相同的反应条件下,这种CuO—ZnO/HZSM-5复合催化剂与采用物理混合法制备出的复合催化剂相比具有更好的催化效果,不但提高了CO2的转化率、二甲醚的选择性以及二甲醚和甲醇的总选择性,同时还改善了催化剂的稳定性.  相似文献   

11.
CO加氢合成C2含氧化合物Rh-Sm/SiO2催化剂的研究   总被引:3,自引:0,他引:3  
使用加压下的CO加氢反应、程序升温还原(TPR)、吸附氢的程序升温脱附(H2-TPD)以及CO和H2吸附等技术,研究了Rh-Sm/SiO2催化剂上Sm促进剂对合成二碳含氧化合物的促进效应.结果表明,Sm加入到Rh/SiO2中使催化剂的活性和二碳含氧化合物的选择性显著提高,催化剂上的Sm3+不易被还原,Sm的加入起着提高Rh分散度的作用,使催化剂上CO和H2的吸附量增大,倾向于促进乙酸和乙醛的生成.  相似文献   

12.
CO加氢合成C2含氧化合物Rh-Sm-V-Li/SiO2催化剂的研究   总被引:2,自引:0,他引:2  
使用加压下的CO加氢反应和程序升温还原(TPR),吸附氢的程序升温脱附(H2-TPD),以及H2和CO吸附等技术,研究了Rh-Sm-V-Li/SiO2催化剂上Sm,V和Li促进剂对合成二碳含氧化合物的促进效应.结果表明,Sm和V加入到Rh/SiO2中使催化剂的活性和生成二碳含氧化合物的选择性显著提高,催化剂上的Sm3+不易被还原,Sm的加入起着提高Rh分散度的作用,使催化剂上H2和CO吸附量提高,并促进乙酸和乙醛的生成;催化剂上的高价钒离子容易还原成低价钒离子,并迁移覆盖金属Rh的表面,使催化剂上H2和CO吸附量降低.低价钒具有良好的贮氢能力,使催化剂的加氢能力显著提高,促进乙醇的生成.  相似文献   

13.
用程序升温表面反应(TPSR)和程序升温还原(TPR)以及过渡应答(TR)等动态手段研究Ni/Al_2O_3催化剂表面上CO氢化反应的活性位状况。结果表明, 催化剂表面存在两种类型的活性位。其中A位来自表面上的聚晶体Ni, B位来自Ni与载体Al_2O_3强相互作用形成的Ni-Al化合物。实验结果还表明, CO在两个活性位都有吸附, 但在有H_2参与的条件下, 会影响二个活性位上的CO吸附量。  相似文献   

14.
Rh catalysts on SiO2 and CeO2 were studied in CO hydrogenation by adding probing molecules during the reaction. The results demonstrate that alkanes were not formed through the oxygen-containing intermediates, e.g. methanol, ethanol or acetaldehyde. Ethanol and acetaldehyde were not produced through the formation of methanol. Acetaldehyde was not formed through ethanol dehydrogenation, however, ethanol was formed through the hydrogenation of acetaldehyde and CeO2 itself can catalyze the hydrogenation of acetaldehyde.  相似文献   

15.
A series of porous microspheres of linear and ethylene diacrylate (M') cross-linked copolymers of 2-vinylpyridine (V) and methyl acrylate (M) reacted with tetracarbonyldichlorodirhodium to form a series of cis-dicarbonylrhodium chelate complex (MVRh and MVM 'Rh). They are thermally stable yet very reactive in the carbonylation of methanol to acetic acid, and of methanol-acetic acid mixture to acetic acid and acetic anhydride with a selectivity of 100% under relatively mild and anhydrous conditions.  相似文献   

16.
研究了CO2在Cu-Zn-Al催化剂上的加氢合成甲醇反应。发现在原料气中添加少量的CO可提高甲醇的选择性和收率。TPD和TPSR结果表明,CO占据催化剂表面部分活性位并抑制CO2的逆水煤气转换,促进了甲醇的生成。  相似文献   

17.
制备了Cu-Zn-Al (4/50/5)催化剂(Cat)和Cu-Zn-Al-Li(40/50/5/5)催化剂(Cat-Li).并将其分别用于由CO/H_2和CO_2/H_2合成甲醇。诸如TPD、TPR、TPSR、脉冲、CD3I-捕获、同位素标记、EPR及原位DRIFT等技术和方法被用来表征这两种催化剂及研究反应机理,对处于去氢、含氢及含氧态催化剂进行了对比研究以期阐明表面氧和表面氢对CO_2和CO活化所起的作用。提出了一个由甲酸根和甲醛氢化及甲醇氧化结果为证的CO/CO_2氢化机理。由于通过Li 取代CuO晶格上的Cu2+形成的氢空位,在Cat中添加Li+改善了甲醇合成活性。CO_2能被一捕获的电子(F-中心)活化,生成的CO2-能容易地被氢化成甲酸根和亚甲基双草酰,后者分解生成H2CO和表面氧。CO能被表面氧活化,生成的CO2-将遵循CO_2氢化的途径。在CD3I-捕获的实验中,我们捕获了表面氧。在无表面氧时,CO可能直接氢化成甲酸基,即CO_2氢化中的一途径。由亚甲基双草酰产生的H2CO表面模型可能与由甲醛吸附或CO氢化生成的H2CO表面模型不同。  相似文献   

18.
Reaction of CO with hydrogen in the presence of [Ru3(CO)12], KI and N-methylpyrrolidone produces small amounts of methanol under mild conditions. Using D2 the methanol is CD3OD confirming that it is a product of CO hydrogenation. In the presence of added H2O, CH x D1-y OH/D (y=0–3) are produced. Carrying out the same reaction in the presence of MeI water and RhCl3·xH2O (x=3–4) produces ethanoic acid in a slow reaction which continues for at least 64 h. The effects of different reaction parameters are discussed and labelling using 13CH3I shows that some of the ethanoic acid originates from sources other than MeI whilst labelling with D2, CD3I, and/or D2O suggest that some originates from CO and H2. Electrospray mass spectrometry and high pressure infra-red spectroscopic studies show that the main species present in catalytic solutions are [HRu3(CO)11], [HRu4(CO)13] and [Ru(CO)3I3] for methanol carbonylation, [Ru(CO)3I3] and [RhI2(CO)2] for ethanoic acid production. A reaction carried out in the absence of [Ru3(CO)12] gave similar results to a reaction in which it was added, suggesting that the entire process may be catalysed by rhodium complexes alone. Electronic Supplementary Material  Supplementary material for this article is available at and is accessible for authorized users.
David J. Cole-HamiltonEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号