首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EOM-CCSD spin-spin coupling constants across hydrogen bonds have been computed for complexes in which NH3, H2O, and FH molecules and their hydrogen-bonded dimers form bridging complexes in the amide region of formamide. The formamide one-bond N-H coupling constant [(1)J(N-H)] across N-H...X hydrogen bonds increases in absolute value upon complexation. The signs of the one-bond coupling constants (1h)J(H-X) indicate that these complexes are stabilized by traditional hydrogen bonds. The two-bond coupling constants for hydrogen bonds with N-H as the donor [(2h)J(N-X)] and the carbonyl oxygen as the acceptor [(2h)J(X-O)] increase in absolute value in the formamide/dimer relative to the corresponding formamide/monomer complex as the hydrogen bonds acquire increased proton-shared character. The largest changes in coupling constants are found for complexes of formamide with FH and (FH)2, suggesting that bridging FH monomers and dimers in particular could be useful NMR spectroscopic probes of amide hydrogen bonding.  相似文献   

2.
Ab initio equation-of-motion coupled cluster singles and doubles calculations have been carried out on a variety of 2:1 FH:NH(3) complexes (F(b)H(b):F(a)H(a):NH(3)) to investigate the effects of structural changes on one- and two-bond spin-spin coupling constants across F(a)-H(a)-N and F(b)-H(b)-F(a) hydrogen bonds and to provide insight into experimentally measured coupling constants for 2:1 FH:collidine (2:1 FH:2,4,6-trimethylpyridine) complexes. Coupling constants have been computed for 2:1 FH:NH(3) equilibrium structures and proton-transferred perpendicular and open structures at 2:1 FH:NH(3), FH:pyridine, and FH:collidine geometries. (2h)J(Fa)(-)(N), (1)J(Fa)(-)(Ha), and (1h)J(Ha)(-)(N) exhibit expected dependencies on distances, angles, and the nature of the nitrogen base. In contrast, one- and two-bond coupling constants associated with the F(b)-H(b)-F(a) hydrogen bond, particularly (2h)J(F)()b(-)(F)()a, vary significantly depending on the F-F distance, the orientation of the hydrogen-bonded pair, and the nature of the complex (HF dimer versus the anion FHF(-)). The structure of the 2:1 FH:collidine complex proposed on the basis of experimentally measured coupling constants is supported by the computed coupling constants. This study of the structures of open proton-transferred 2:1 FH:NH(3), FH:pyridine, and FH:collidine complexes and the coupling constants computed for 2:1 FH:NH(3) complexes at these geometries provides insight into the role of the solvent in enhancing proton transfer across both N-H(a)-F(a) and F(b)-H(b)-F(a) hydrogen bonds.  相似文献   

3.
Ab initio calculations have been performed on a series of complexes in which (HCNH)(+) is the proton donor and CNH, NCH, FH, ClH, and FCl (molecules X and Z) are the proton acceptors in binary complexes X:HCNH(+) and HCNH(+):Z, and ternary complexes X:HCNH(+):Z. These complexes are stabilized by C-H(+)···A and N-H(+)···A hydrogen bonds, where A is the electron-pair donor atom of molecules X and Z. Binding energies of the ternary complexes are less than the sum of the binding energies of the corresponding binary complexes. In general, as the binding energy of the binary complex increases, the diminutive cooperative effect increases. The structures of these complexes, data from the AIM analyses, and coupling constants (1)J(N-H), (1h)J(H-A), and (2h)J(N-A) for the N-H(+)···A hydrogen bonds, and (1)J(C-H), (1h)J(H-A), and (2h)J(C-A) for the C-H(+)···A hydrogen bonds provide convincing evidence of diminutive cooperative effects in these ternary complexes. In particular, the symmetric N···H(+)···N hydrogen bond in HCNH(+):NCH looses proton-shared character in the ternary complexes X:HCNH(+):NCH, while the proton-shared character of the C···H(+)···C hydrogen bond in HNC:HCNH(+) decreases in the ternary complexes HNC:HCNH(+):Z and eventually becomes a traditional hydrogen bond as the strength of the HCNH(+)···Z interaction increases.  相似文献   

4.
A systematic ab initio EOM-CCSD study of 15N-15N and 15N-1H spin-spin coupling constants has been carried out for a series of complexes formed from 11 nitrogen bases with experimentally measured proton affinities. When these complexes are arranged in order of increasing proton affinity of the proton-acceptor base and, for each proton acceptor, increasing order of proton affinity of the protonated N-H donor, trends in distances and signs of coupling constants are evident that are indicative of the nature of the hydrogen bond. All two-bond spin-spin coupling constants (2hJ(N-N)) are positive and decrease as the N-N distance increases. All one-bond N-H coupling constants (1J(N-H)) are negative (1K(N-H) are positive). 1J(N-H) is related to the N-H distance and the hybridization of the donor N atom. One-bond H...N coupling constants (1hJ(H-N)) are positive (1hK(H-N) are negative) for traditional hydrogen bonds, but 1hJ(H-N) becomes negative when the hydrogen bond acquires sufficient proton-shared character. The N-N and H...N distances at which 1hJ(H-N) changes sign are approximately 2.71 and 1.62 A, respectively. Predictions are made of the values of 2hJ(N-N) and 1J(N-H), and the signs of 1hJ(H-N), for those complexes that are too large for EOM-CCSD calculations.  相似文献   

5.
Ab initio equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) calculations have been carried out to investigate the effect of a third polar near-neighbor on one-bond ((1)J(X)(-)(H) and (1h)J(H)(-)(Y)) and two-bond ((2h)J(X)(-)(Y)) spin-spin coupling constants in AH:XH:YH(3) complexes, where A and X are (19)F and (35)Cl and Y is either (15)N or (31)P. The changes in both one- and two-bond spin-spin coupling constants upon trimer formation indicate that the presence of a third molecule promotes proton transfer across the X-H-Y hydrogen bond. The proton-shared character of the X-H-Y hydrogen bond increases in the order XH:YH(3) < ClH:XH:YH(3) < FH:XH:YH(3). This order is also the order of decreasing shielding of the hydrogen-bonded proton and decreasing X-Y distance, and is consistent with the greater hydrogen-bonding ability of HF compared to HCl as the third molecule. For all complexes, the reduced X-H and X-Y spin-spin coupling constants ((1)K(X)(-)(H) and (2h)K(X)(-)(Y)) are positive, consistent with previous studies of complexes in which X and Y are second-period elements in hydrogen-bonded dimers. (1h)K(H)(-)(Y) is, as expected, negative in these complexes which have traditional hydrogen bonds, except for ClH:FH:NH(3) and FH:FH:NH(3). In these two complexes, the F-H-N hydrogen bond has sufficient proton-shared character to induce a change of sign in (1h)K(H)(-)(Y). The effects of trimer formation on spin-spin coupling constants are markedly greater in complexes in which NH(3) rather than PH(3) is the proton acceptor.  相似文献   

6.
Equation-of-motion coupled cluster singles and doubles (EOM-CCSD) calculations have been performed to evaluate three-bond (15)N-(31)P coupling constants ((3h)J(N[bond]P)) across N[bond]H....O[bond]P hydrogen bonds in model cationic and anionic complexes including NH(4)(+):OPH, NH(4)(+):OPH(3), NH(3):(-)O(2)PH(2), NFH(2):(-)O(2)PH(2), and NF(2)H:(-)O(2)PH(2). Three-bond coupling constants can be appreciable when the phosphorus is P(V), but are negligible with P(III). (3h)J(N[bond]P) values in complexes with cyclic or open structures are less than 1 Hz, a consequence of the nonlinear arrangement of N, H, O, and P atoms. For complexes with these structures, (3h)J(N[bond]P) may not be experimentally measurable. In contrast, complexes in which the N, H, O, and P atoms are collinear or nearly collinear have larger values of (3h)J(N[bond]P), even though the N[bond]P distances are longer than N[bond]P distances in cyclic and open structures. In linear complexes, (3h)J(N[bond]P) is dominated by the Fermi-contact term, which is distance dependent. Therefore, N[bond]P (and hydrogen-bonding N[bond]O) distances in these complexes can be determined from experimentally measured (15)N-(31)P coupling constants.  相似文献   

7.
Ab initio EOM-CCSD calculations have been performed to determine one- and two-bond spin-spin coupling constants 1J(F-Cl), 1XJ(Cl-N), and 2XJ(F-N) across F-Cl...N halogen bonds in complexes with F-Cl as the Lewis acid and N2, FCN, HCN, (CH3)CN, LiCN, Z-HNNH, H2CNH, NH2F, NH3, cyclic-NH(CH2)2, and NH2(CH3) as Lewis bases. The structures of these complexes were optimized at MP2 with the aug'-cc-pVTZ basis set. The absolute value of 2XJ(F-N) increases in these complexes as the F-N distance decreases, a behavior similar to that of 2hJ(F-N) for complexes stabilized by F-H...N hydrogen bonds. 1XJ(Cl-N) also tends to increase in absolute value with decreasing F-N distance. 1J(F-Cl) is always positive, decreases upon complex formation as the F-Cl distance increases, and appears to be sensitive to the hybridization of the nitrogen base. The relatively large differences in the values of these coupling constants in the various complexes and their variation along the chlorine-transfer coordinate for F-Cl...NH3 suggest that they should be amenable to experimental investigation.  相似文献   

8.
The N-H...X (X = N,O,S) intramolecular hydrogen bond in the series of 2(2'-heteroaryl)pyrroles and their trifluoroacetyl derivatives is examined by the (1)H, (13)C, (15)N spectroscopy and density functional theory (DFT) calculations. The influence of the hydrogen bond on coupling and shielding constants is considered. It is shown that the N-H...N intramolecular hydrogen bond causes a larger increase in the absolute size of the (1)J(N,H) coupling constant and a larger deshielding of the bridge proton than the N-H...O hydrogen bond. The effect of the N-H...S interaction on the (1)J(N,H) coupling constant and the shielding of the bridge proton is small. The NMR parameter changes in the series of the 2(2'-heteroaryl)pyrroles due to N-H...X hydrogen bond and the series of the 1-vinyl-2-(2'-heteroaryl)-pyrroles due to C-H...X hydrogen bond have the same order. The proximity of the nitrogen, oxygen or sulfur lone pair to the F...H hydrogen bridge quenches the trans-hydrogen bond spin-spin couplings (1h)J(F,H-1) and (2h)J(F,N).  相似文献   

9.
Ab initio EOM-CCSD calculations have been performed on 3:1 FH:NH3 complexes at their own optimized MP2/6-31+G(d,p) geometries and at the optimized geometries in the hydrogen-bonding regions of corresponding 3:1 FH:collidine complexes. The isolated gas-phase equilibrium 3:1 FH:NH3 complex has an open structure with a proton-shared Fa-Ha-N hydrogen bond, while the isolated equilibrium 3:1 FH:collidine complex has a perpendicular structure with an Fa-Ha-N hydrogen bond that is on the ion-pair side of proton-shared. The Fa-N coupling constant ((2h)J(Fa-N)) for the equilibrium 3:1 FH:NH3 complex is large and negative, consistent with a proton-shared Fa-Ha-N hydrogen bond; (2h)JFb-Fa is positive, reflecting a short Fb-Fa distance and partial proton transfer from Fb to Fa across the Fb-Hb-Fa hydrogen bond. In contrast, (2h)JFa-N has a smaller absolute value and (2h)JFb-Fa is greater for the 3:1 FH:NH3 complex at the equilibrium 3:1 FH:collidine geometry, consistent with the structural characteristics of the Fa-Ha-N and Fb-Hb-Fa hydrogen bonds. Coupling constants computed at proton-transferred 3:1 FH:collidine perpendicular geometries are consistent with experimental coupling constants for the 3:1 FH:collidine complex in solution and indicate that the role of the solvent is to promote further proton transfer from Fa to N across the Fa-Ha-N hydrogen bond, and from Fb to Fa across the two equivalent Fb-Hb-Fa hydrogen bonds. The best correlations between experimental and computed coupling constants are found for complexes with perpendicular proton-transferred structures, one having the optimized geometry of a 3:1 FH:collidine complex at an Fa-Ha distance of 1.80 A, and the other at the optimized 3:1 FH:collidine geometry with distances derived from the experimental coupling constants. These calculations provide support for the proposed perpendicular structure of the 3:1 FH:collidine complex as the structure which exists in solution.  相似文献   

10.
Ab-initio MP2/aug'-cc-pVTZ calculations have been performed to determine the structures and binding energies of proton-bound complexes stabilized by N-H+-P hydrogen bonds and to investigate the nature of the proton-transfer coordinate in these systems. Double minima are found only when the difference between the protonation energies of the N and P bases is less than about 4 kcal/mol. The isomer in which the protonated nitrogen base is the donor lies lower on the potential surface and also has a greater binding energy relative to the corresponding isolated monomers. Equation-of-motion coupled cluster singles and doubles (EOM-CCSD) calculations have been employed to obtain one- and two-bond spin-spin coupling constants across these hydrogen bonds. Two-bond coupling constants (2h)J(N-P) correlate with N-P distances, irrespective of whether the donor ion is N-H+ or P-H+. One-bond coupling constants (1)J(N-H) and (1h)J(H-P) for complexes stabilized by N-H+...P hydrogen bonds correlate with corresponding distances, but similar correlations are not found for (1)J(P-H) and (1h)J(H-N) for complexes with P-H+...N hydrogen bonds. Negative values of (1h)K(H-N) and (1h)K(H-P) indicate that the hydrogen bonds in these complexes are traditional. Comparisons are made with complexes stabilized by N-H+-N and P-H+-P hydrogen bonds.  相似文献   

11.
A systematic ab initio investigation has been carried out to determine the structures, binding energies, and spin-spin coupling constants of ternary complexes X:CNH:Z and corresponding binary complexes X:CNH and CNH:Z, for X, Z = CNH, FH, ClH, FCl, and HLi. The enhanced binding energies of ternary complexes X:CNH:Z for fixed X as a function of Z decrease in the same order as the binding energies of the binary complexes CNH:Z. In contrast, the enhanced binding energies of the ternary complexes for fixed Z as a function of X do not decrease in the same order as the binding energies of the binary complexes X:CNH, a consequence of the increased stabilities of ternary complexes FCl:CNH:Z due to very strong chlorine-shared halogen bonds. For complexes in which the X···CNH interaction is a D-H···C hydrogen bond for D-H the proton-donor group (N-H, F-H, or Cl-H), spin-spin coupling constants (1)J(D-H) and (2h)J(D-C) in ternary complexes X:CNH:Z decrease in absolute value as the binding energies of binary complexes CNH:Z and the enhanced binding energies of the ternary complexes for fixed X as a function of Z also decrease. However, (2X)J(F-C) increases as the enhanced binding energies of the ternary complexes FCl:CNH:Z decrease, a consequence of the nature of the chlorine-shared halogen bond. The one-bond coupling constants (1)J(N-H) for the CNH···Z interaction in ternary complexes vary significantly, depending on the nature of the X···CNH interaction. The largest values of (1)J(N-H) are found for ternary complexes with FCl as X. Two-bond coupling constants (2h)J(N-A) for A the proton-acceptor atom of Z, and (2d)J(N-H) decrease in absolute value in the order of decreasing enhancement energies of ternary complexes X:CNH:Z for fixed Z as a function of X.  相似文献   

12.
Amino acid side chains involved in hydrogen bonds and electrostatic interactions are crucial for protein function. However, detailed investigations of such side chains in solution are rare. Here, through the combination of long-range (15)N-(13)C scalar J-coupling measurements and an atomic-detail molecular dynamics (MD) simulation, direct insight into the structural dynamic behavior of lysine side chains in human ubiquitin has been gained. On the basis of (1)H/(13)C/(15)N heteronuclear correlation experiments selective for lysine NH(3)(+) groups, we analyzed two different types of long-range (15)N-(13)C J-coupling constants: one between intraresidue (15)Nζ and (13)Cγ nuclei ((3)J(NζCγ)) and the other between (15)Nζ and carbonyl (13)C' nuclei across a hydrogen bond ((h3)J(NζC')). The experimental (3)J(NζCγ) data confirm the highly mobile nature of the χ(4) torsion angles of lysine side chains seen in the MD simulation. The NH(3)(+) groups of Lys29 and Lys33 exhibit measurable (h3)J(NζC') couplings arising from hydrogen bonds with backbone carbonyl groups of Glu16 and Thr14, respectively. When interpreted together with the (3)J(NζCγ)-coupling constants and NMR-relaxation-derived S(2) order parameters of the NH(3)(+) groups, they strongly suggest that hydrogen bonds involving NH(3)(+) groups are of a transient and highly dynamic nature, in remarkably good agreement with the MD simulation results.  相似文献   

13.
There have been numerous theoretical and experimental investigations examining NMR parameters related to non-amino N-H...N H-bonded moieties in both biological and chemical contexts. In contrast, little information on the geometry dependence of NMR parameters related to the biologically important H-bond donor amino group is available. Herein, the geometric dependencies of the one-bond amino N-H spin-spin coupling constants [(1)J(NH)] in the cyanamide monomer and dimer have been computed with B3LYP and the aug-cc-pVTZ-su0 basis set. In an isolated planar cyanamide molecule, the |(1)J(NH)| couplings were found to increase as the N-H bond lengthened. In contrast, in the planar cyanamide dimer the size of the H-bonded amino N-H coupling (|(1)J(N(d)H(d))|) decreased with increasing N(d)H(d) bond length. The |(1)J(N(d)H(d))| coupling was larger than the |(1)J(N(d)H(free))| coupling for N(d)H(d) distances up to 1.18 A (for a fixed N(d)H(free) distance of 1.006 A). Hence, the decrease of |(1)J(NH)| with increasing N-H distance, as well as the larger value of |(1)J(N(d)H(d))| compared to |(1)J(N(d)H(free))|, were only observed for situations where the amino group is involved in an H-bonding interaction. This is attributed to electron redistribution induced by the presence of the second cyanamide molecule. Similar electron-redistribution effects are thought to be responsible for the observed distance dependence of computed (1)J(NH) couplings of H-bonded amino groups in near-planar G-quartet structures. Here, the |(1)J(NH)| couplings of the amino N-H bonds decreased with increasing N-H bond length whereas the |(1)J(N(d)H(d))| couplings are approximately 7 Hz larger than the |(1)J(N(d)H(free))| couplings, despite the longer N(d)-H(d) bond length.  相似文献   

14.
Two novel compounds, (L(1)H)(2)[SiF(6)] x 2H(2)O (1) and (L(2)H)(2)[SiF(5)(H(2)O)](2) x 3H(2)O (2), resulting from the reactions of H(2)SiF(6) with 4'-aminobenzo-12-crown-4 (L(1)) and monoaza-12-crown-4 (L(2)), respectively, were studied by X-ray diffraction and characterised by IR and (19)F NMR spectroscopic methods. Both complexes have ionic structures due to the proton transfer from the fluorosilicic acid to the primary amine group in L(1) and secondary amine group incorporated into the macrocycle L(2). The structure of 1 is composed of [SiF(6)](2-) centrosymmetric anions, N-protonated cations (L(1)H)(+), and two water molecules, all components being bound in the layer through a system of NH[...]F, NH[...]O and OH[...]F hydrogen bonds. The [SiF(6)](2-) anions and water molecules are assembled into inorganic negatively-charged layers via OH[dot dot dot]F hydrogen bonds. The structure of 2 is a rare example of stabilisation of the complex anion [SiF(5)(H(2)O)](-), the labile product of hydrolytic transformations of the [SiF(6)](2-) anion in an aqueous solution. The components of 2, i.e., [SiF(5)(H(2)O)](-), (L(2)H)(+), and water molecules, are linked by a system of NH[...]F, NH[...]O, OH[...]F, OH[dot dot dot]O hydrogen bonds. In a way similar to 1, the [SiF(5)(H(2)O)](-) anions and water molecules in 2 are combined into an inorganic negatively-charged layer through OH[...]F and OH[...]O interactions.  相似文献   

15.
The synthesis and characterization of several salts of the B(12)F(12)(2-) anion are reported. The potassium salt was prepared in 72% recrystallized yield by treating K(2)B(12)H(12) with liquid HF at 70 degrees C for 14 h and 20% F(2)/N(2) in liquid HF at 25 degrees C for 72 h. The CPh(3)(+), N(n-Bu)(4)(+), NH(n-C(12)H(25))(3)(+), NH(4)(+), and Li(+) salts were prepared by metathesis reactions. The [NH(n-C(12)H(25))(3)](2)[B(12)F(12)] salt is soluble in aromatic hydrocarbon solvents. The B(12)F(12)(2-) anion is remarkably stable. The salts Li(2)B(12)F(12) and [NH(4)](2)[B(12)F(12)] were stable when heated to 450 and 480 degrees C, respectively. The B(12)F(12)(2-) anion did not react with 98% H(2)SO(4), 70% HNO(3), 3 M KOH, a 10-fold excess of Ce(NH(4))(2)(NO(3))(6) in aqueous solution, or metallic sodium in THF. In addition, B(12)F(12)(2-) did not react with metallic lithium in a mixture of ethylene carbonate and dimethyl carbonate, was not reduced at 0 V versus Li(+/0) in that solvent, and underwent a quasi-reversible oxidation at 4.9 V versus Li(+/0). The structure of [CPh(3)](2)[B(12)F(12)] was determined by single-crystal X-ray diffraction: tetragonal, space group I4(1)/acd, a = 19.102(2), b = 19.102(2), c = 20.535(3) A, V = 7492.2(2) A(3), Z = 8, T = 173(2) K, R(1) = 0.064. The B(12)F(12)(2-) anion weakly interacts with the two symmetry related CPh(3)(+) cations via F.C contacts of 3.087(2) A, which are very close to the 3.17 A sum of van der Waals radii for these two atoms. Taken together, the data suggest that B(12)F(12)(2-) may be useful as a very robust weakly coordinating anion.  相似文献   

16.
Ab initio calculations have been carried out in a systematic investigation of P···N pnicogen complexes H(2)XP:NXH(2) for X ═ H, CH(3), NH(2), OH, F, and Cl, as well as selected complexes with different substituents X bonded to P and N. Binding energies for complexes H(2)XP:NXH(2) range from 8 to 27 kJ mol(-1) and increase to 39 kJ mol(-1) for H(2)FP:N(CH(3))H(2). Equilibrium structures have a nearly linear A-P-N arrangement, with A being the atom directly bonded to P. Binding energies correlate with intermolecular N-P distances as well as with bonding parameters obtained from AIM and SAPT analyses. Complexation increases (31)P chemical shieldings in complexes with binding energies greater than 19 kJ mol(-1). One-bond spin-spin coupling constants (1p)J(N-P) across the pnicogen interaction exhibit a quadratic dependence on the N-P distance for complexes H(2)XP:NXH(2), similar to the dependence of (2h)J(X-Y) on the X-Y distance for complexes with X-H···Y hydrogen bonds. However, when the mixed complexes H(2)XP:NX'H(2) are included, the curvature of the trendline changes and the good correlation between (1p)J(N-P) and the N-P distance is lost.  相似文献   

17.
Ab initio calculations have been performed to obtain structures and coupling constants (1)J(N-H), (1h)J(H-N), and (2h)J(N-N) for models of proton sponges with symmetric and asymmetric N-H(+)-N intramolecular hydrogen bonds (IMHBs). For a given model, the asymmetric structure has a lower energy, a longer N-N distance, and a hydrogen bond which has a greater deviation from linearity. The computed values of (2h)J(N-N) for the models are significantly less than predicted values based on the distance dependence of (2h)J(N-N) for complexes with intermolecular N-H(+)-N hydrogen bonds. However, the reduced values of (2h)J(N-N) cannot be attributed solely to the distortion of the hydrogen bond in the models, but also reflect differences in s electron populations at the nitrogens in both the ground state and the excited states which couple to it through the Fermi-contact (FC) operator. Values of (2h)J(N-N) for IMHBs can be related quadratically to the N-N distances in the models, and demonstrate that there is no discrepancy between computed values of (2h)J(N-N) at the short N-N distances found in these systems and experimental data for proton sponges.  相似文献   

18.
We study how the degree of fluorine substitution for hydrogen atoms in ethene affects its reactivity in the gas phase. The reactions of a series of small fluorocarbon cations (CF(+), CF(2)(+), CF(3)(+), and C(2)F(4)(+)) with ethene (C(2)H(4)), monofluoroethene (C(2)H(3)F), 1,1-difluoroethene (CH(2)CF(2)), and trifluoroethene (C(2)HF(3)) have been studied in a selected ion flow tube. Rate coefficients and product cations with their branching ratios were determined at 298 K. Because the recombination energy of CF(2)(+) exceeds the ionization energy of all four substituted ethenes, the reactions of this ion produce predominantly the products of nondissociative charge transfer. With their lower recombination energies, charge transfer in the reactions of CF(+), CF(3)(+), and C(2)F(4)(+) is always endothermic, so products can only be produced by reactions in which bonds form and break within a complex. The trends observed in the results of the reactions of CF(+) and CF(3)(+) may partially be explained by the changing value of the dipole moment of the three fluoroethenes, where the cation preferentially attacks the more nucleophilic part of the molecule. Reactions of CF(3)(+) and C(2)F(4)(+) are significantly slower than those of CF(+) and CF(2)(+), with adducts being formed with the former cations. The reactions of C(2)F(4)(+) with the four neutral titled molecules are complex, giving a range of products. All can be characterized by a common first step in the mechanism in which a four-carbon chain intermediate is formed. Thereafter, arrow-pushing mechanisms as used by organic chemists can explain a number of the different products. Using the stationary electron convention, an upper limit for Δ(f)H°(298)(C(3)F(2)H(3)(+), with structure CF(2)═CH-CH(2)(+)) of 628 kJ mol(-1) and a lower limit for Δ(f)H°(298)(C(2)F(2)H(+), with structure CF(2)═CH(+)) of 845 kJ mol(-1) are determined.  相似文献   

19.
The structure and vibrational spectra of hexamethylpyrromethene (HMPM) have been investigated by X-ray crystallography, IR and Raman spectroscopies, and density functional theory calculations. HMPM crystallizes in the form of dimers, which are held together by bifurcated N-H(...N)(2) hydrogen bonds, involving one intramolecular and one intermolecular N-H...N interaction. The monomers are essentially planar, and the mean planes of the monomers lie approximately perpendicular to one another, so that the four N atoms in the dimer form a distorted tetrahedron. The structure of the HMPM dimer is well-reproduced by B3LYP/6-31G calculations. A comparison of the calculated geometry of the dimer with that of the monomer reveals only small changes in the N-H...N entity and the methine bridge angles upon dimerization. These are a result of weakening of the intramolecular N-H...N hydrogen bond and the formation of a more linear N-H...N intermolecular hydrogen bond. Using an empirical relation between the shift of the N-H stretching frequency of pyrrole and the enthalpy of adduct formation with bases [Nozari, M. S.; Drago, R. S. J. Am. Chem. Soc. 1970, 92, 7086-7090], estimates of the strength of the intra- and intermolecular hydrogen bonds are obtained. IR and Raman spectroscopies of HMPM and its isotopomers deuterated at the pyrrolic nitrogen atom and at the methine bridge reveal that the molecule is monomeric in nonpolar organic solvents but dimeric in a solid Ar matrix and in KBr pellets. The matrix IR spectra show a splitting of vibrational modes for the dimer, particularly those involving the N-H coordinates. Due to intrinsic deficiencies of the B3LYP/6-31G approximation, a satisfactory reproduction of these modes of the monomeric and dimeric HMPM requires specific adjustments of the NH scaling factors for the calculated force constants and, in the case of the NH out-of-plane modes of HMPM dimers, also of intra- and intermolecular coupling constants. This parametrization does not significantly affect the other calculated modes, which in general reveal a very good agreement with the experimental data.  相似文献   

20.
Ab initio MP2/aug'-cc-pVTZ calculations have been performed to determine the structures and binding energies of 22 open and 3 cyclic complexes formed from the sp2 [H(2)C=PH and HP=PH (cis and trans)] and sp3 [PH2(CH3) and PH3] hybridized phosphorus bases and their corresponding protonated ions. EOM-CCSD calculations have been carried out to obtain (31)P-(31)P and (31)P-(1)H coupling constants across P-H+-P hydrogen bonds. Two equilibrium structures with essentially linear hydrogen bonds have been found along the proton-transfer coordinate, except for complexes with P(CH3)H3+ as the proton donor to the sp2 bases. Although the isomer having the conjugate acid of the stronger base as the proton donor lies lower on the potential energy surface, it has a smaller binding energy relative to the corresponding isolated monomers than the isomer with the conjugate acid of the weaker base as the donor. The hydrogen bond of the latter has increased proton-shared character. All of the complexes are stabilized by traditional hydrogen bonds, as indicated by positive values of the reduced coupling constants (2h)K(P-P) and (1)K(P-H), and negative values of (1h)K(H-P). (2h)J(P-P) correlates with the P-P distance, a correlation determined primarily by the nature of the proton donor. For open complexes, (1)J(P-H) always increases relative to the isolated monomer, while (1h)J(H-P) is relatively small and negative. (2h)J(P-P) values are quite large in open complexes, but are much smaller in cyclic complexes in which the P-H+-P hydrogen bonds are nonlinear. Thus, experimental measurements of (2h)J(P-P) should be able to differentiate between open and cyclic complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号