首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The total energies and electronic structures of SrMnO3 are studied from first principles calculations within the generalized-gradient approximation (GGA) framework. The orthorhombic structure with AFM1 configuration (see Fig. 1) is found to be the ground state of SrMnO3, consistent with the latest experimental observation. The orthorhombic distortion effect of SrMnO3 is studied by comparing its electronic structure and that of cubic structure, while correlation effect is evaluated by comparing GGA and GGA+U calculations. In contrast to previous theoretical studies, our calculations show that both the orthorhombic distortion and the electron correlation play important roles in the electronic structure of SrMnO3.  相似文献   

2.
We have investigated the differential conductance spectra of the point contacts between the heavy-fermion superconductor CeCoIn5 and Pt. Many of them show a double-maximum structure that indicates the superconducting energy gap Δ. The Δ values derived using Blonder-Tinkham-Klapwijk model, however, varies from 0.47 to 0.77 meV, and yet they are within the scatter of the reported values. The evolution of Δ below Tc is slow as compared with that of BCS gap probably reflecting the unconventional superconductivity in CeCoIn5.  相似文献   

3.
Using the quasiclassical Green's function formalism, we study the induced odd-frequency pairing states in ballistic normal metal-superconductor (N/S) junctions where a superconductor has even-frequency symmetry in the bulk and a normal metal layer has an arbitrary length. We show that the concept of the odd-frequency pairing state plays an important role to interpret a McMillan-Rowell bound state in the normal metal.  相似文献   

4.
The electron-phonon interaction in cuprates with c-axis polarised optical phonons, which is roughly one order of magnitude stronger than superexchange, bounds holes into mobile bipolarons. Bipolarons pin the chemical potential within the charge-transfer gap of doped Mott insulators, accounting for unusual kinetics and thermodynamics of doped cuprates such as the Nernst and giant proximity effects, pseudo-gaps, and normal-state diamagnetism. We propose that “quasi-particle” peaks, “Fermi-arcs”, and high-energy “waterfalls” in the photoemission spectra of cuprates originate from the photo-ionization matrix elements of disorder-localised band-tails in the charge-transfer gap.  相似文献   

5.
We have performed room temperature high pressure structural studies on the ferromagnetic perovskite SrRuO3 to 34 GPa. We have also used three different pressure media (silicone fluid, 4:1 methanol:ethanol and argon) to test for possible effects of pressure media on compression data. The orthorhombic perovskite structure is stable to the highest pressure, and the data can be fit with a bulk modulus of with a pressure derivative of for all of the pressure media. We have also examined the high pressure behavior of the RuO6 octahedra using a model that assumes the octahedra are not distorted. Various tilt angles around the ideal cubic perovskite axes are found and can be used to estimate the Ru-O-Ru bond angle that is known to be directly related to the ferromagnetic Curie temperature. For all pressure media, there appears to be a minimum in the Ru-O-Ru bond angle around 15 GPa. Implications for the observed high pressure magnetic behavior of SrRuO3 will be discussed.  相似文献   

6.
A proximity effect in an s-wave superconductor/ferromagnet (SC/F) junction is theoretically studied using the second order perturbation theory for the tunneling Hamiltonian and Green's function method. We calculate a pair amplitude induced by the proximity effect in a weak ferromagnetic metal (FM) and a half-metal (HM). In the SC/FM junction, it is found that a spin-singlet pair amplitude (Ψs) and spin-triplet pair amplitude (Ψt) are induced in FM and both amplitudes depend on the frequency in the Matsubara representation. Ψs is an even function and Ψt is an odd function with respect to the Matsubara frequency (ωn). In the SC/HM junction, we examine the proximity effects by taking account of magnon excitations in HM. It is found that the triplet-pair correlation is induced in HM. The induced pair amplitude in HM shows a damped oscillation as a function of the position and contains the terms of even and odd functions of ωn as in the case of the SC/FM junction. We discuss that in our tunneling model the pair amplitude of even function of ωn only contributes to a Josephson current.  相似文献   

7.
The shapes of the astrophysically interesting neutral manganese (Mn I) resonance spectral lines (403.075, 403.306, 403.448, 279.481, 279.826 and 280.108 nm) have been observed together with six other prominent Mn I lines in the laboratory helium plasma at a 47 000 K electron temperature and electron density. With these plasma parameters the Stark broadening has been found to be an important mechanism in the Mn I line shape formation. Our measured Mn I Stark widths (W) are the first data in the literature. Stark widths are compared with line hyperfine structure splittings (Δhfs). At above mentioned helium plasma conditions the line broadening due to hyperfine structure splitting of the lines is less than that of the Stark and Doppler broadening for the case of the Mn I lines under investigation. We estimate that at electron densities below and electron temperatures below 4000 K the components in the hyperfine structure play an important role in the mentioned Mn I line shape formation.  相似文献   

8.
Using the effective mass and parabolic band approximations and a variational procedure we have calculated the combined effects of intense laser radiation, hydrostatic pressure, and applied electric field on shallow-donor impurity confined in cylindrical-shaped single and double GaAs-Ga1−xAlxAs QD. Several impurity positions and inputs of the heterostructure dimensions, hydrostatic pressure, and applied electric field have been considered. The laser effects have been introduced by a perturbative scheme in which the Coulomb and the barrier potentials are modified to obtain dressed potentials. Our findings suggest that (1) for on-center impurities in single QD the binding energy is a decreasing function of the dressing parameter and for small dot dimensions of the structures (lengths and radius) the binding energy is more sensitive to the dressing parameter, (2) the binding energy is an increasing/decreasing function of the hydrostatic pressure/applied electric field, (3) the effects of the intense laser field and applied electric field on the binding energy are dominant over the hydrostatic pressure effects, (4) in vertically coupled QD the binding energy for donor impurity located in the barrier region is smaller than for impurities in the well regions and can be strongly modified by the laser radiation, and finally (5) in asymmetrical double QD heterostructures the binding energy as a function of the impurity positions follows a similar behavior to the observed for the amplitude of probability of the noncorrelated electron wave function.  相似文献   

9.
The formation of free-standing gold nanosieves by ablation with ultra-short laser pulses is demonstrated. Macroscopic areas are generated fast and efficiently by the application of a parallel production technique. The technique is based on a lens array formed by self-assembling quartz microspheres on a thin metal foil. The evaporated foils have a final thickness of 400 nm, and the hole spacing is set by the diameter of the microspheres (∼7 m) while the pore size is ∼700 nm. The characteristic spacing of the generated hole structure is verified by an optical diffraction technique.  相似文献   

10.
The total energies and structural parameters of SrTcO3 are calculated by means of the generalized gradient approximation (GGA) plus on-site Coulomb interaction corrections (GGA+U) method. G-type antiferromagnetic (G-AFM) is found to be ground state, in consistence with the previous experimental result. The distortions around Sr and Tc upon magnetic transition are compared and the change of distortion for SrO bond upon magnetic transition is found to be 25.83 times of the change for TcO bond. Our results point to an active role played by Sr in magnetostructural coupling in SrTcO3.  相似文献   

11.
The effect of bias voltage on electron tunneling across a junction with a ferroelectric-ferromagnetic composite barrier is investigated theoretically. Because of the inversion symmetry breaking of the spontaneous ferroelectric polarization, bias voltage dependence of the electron tunneling shows significant differences between the positive bias and the negative one. The differences of spin filtering or tunnel magnetoresistance increase with the increasing absolute value of bias voltage. Such direction preferred electron tunneling is found intimately related with the unusual asymmetry of the electrical potential profile in two-phase composite barrier and provides a unique change to realize rectifying functions in spintronics.  相似文献   

12.
Self-organized magnetic nanoparticles are obtained through selective silicidation of cobalt using a silicon substrate pre-structured with tri-dimensional gold islands as template. On the step bunches array of a vicinal Si(1 1 1) surface, gold deposition results in the formation of nanodroplets aligned along the step bunches. A subsequent cobalt deposition is performed onto this gold islands-covered Si surface, with two silicidation processes investigated: reactive deposition (RD) and solid phase reaction (SPR). The cobalt is converted into a non-magnetic silicide film except where the surface is locally masked by the gold islands, giving rise to cobalt nanomagnets which can be capped by a gold layer. A scanning tunneling microscopy comparative study of RD and SPR processes demonstrates that the former induces strong surface morphology changes while the latter preserves the pristine islands. Magnetic measurements performed with alternating gradient force magnetometry at room temperature are used to demonstrate the presence of ferromagnetic cobalt nanoparticles on SPR-processed samples. These nanomagnets show a clear in-plane anisotropy behavior.  相似文献   

13.
We present ab initio calculation results for electron-phonon (e-ph) contribution to hole lifetime broadening of the surface state on Al(0 0 1). We show that e-ph coupling in this state is significantly stronger than in bulk Al at the Fermi level. It makes the e-ph decay channel very important in the formation of the hole decay in the surface state at . We also present the results for e-e lifetime broadening in a quantum-well state in 1 ML K/Cu(1 1 1). We show that this contribution is not negligible and is much larger than that in a surface state on Ag(1 1 1).  相似文献   

14.
The temperature dependence of photoluminescence in Europium tris[3-(trifluoro-methylhydroxymethylene)-(+)-camphorate] (EuTFC) embedded in polymer films has been examined from 40 K down to 4.2 K with the goal of preparing sensor films for low-temperature thermal imaging. The behavior of EuTFC showed significant difference when based on polystyrene compared to poly(n-alkyl methacrylate)s. In poly(n-alkyl methacrylate)s prepared by standard methods for imaging applications, the photoluminescence is fully saturated below 30 K, whereas in polystyrene films there is a strong temperature dependence even down to 4.2 K. By optimizing the preparation procedure for films made of poly(butyl methacrylate) (PBMA) and poly(methyl methacrylate), also these polymers became very sensitive down to liquid helium temperature. The maximum temperature sensitivity of EuTFC in PBMA is found to be 1.0%/K at 4.2 K. The problem of delamination and cracking of the polymer film at cryogenic temperature is also avoided by the special preparation method.  相似文献   

15.
The atomic structure and charge distribution of Ag adsorbed Ge(0 0 1) surfaces have been investigated by means of Ge 3d core- and Ag 4d core-levels photoelectron spectroscopy. A mono-atomic layer of Ag was deposited on the clean Ge(0 0 1) c(4×2) surface at 80 K. The Ge 3d spectrum measured at 80 K was deconvoluted into two surface components, which is consistent with the previously proposed Ag ad-dimer model. After annealing the surface at room temperature, the rearrangement of the charge distribution was revealed to include electron transfer from Ge to Ag in conjunction with the surface restructuring process by the annealing.  相似文献   

16.
We propose that cuprate superconductors are in the vicinity of a spontaneous d-wave type Fermi surface symmetry breaking, often called a d-wave Pomeranchuk instability. This idea is explored by means of a comprehensive study of magnetic excitations within the slave-boson mean-field theory of the t-J model. We can naturally understand the pronounced xy anisotropy of magnetic excitations in untwinned YBa2Cu3Oy and the sizable change of incommensurability of magnetic excitations at the transition temperature to the low-temperature tetragonal lattice structure in La2-xBaxCuO4. In addition, the present theoretical framework allows the understanding of the similarities and differences of magnetic excitations in Y-based and La-based cuprates.  相似文献   

17.
We theoretically investigate the spin accumulation in two parallel coupled quantum dots (QDs) with ferromagnetic and superconducting electrodes. Due to the ferromagnetic lead, the spin accumulation appears on the resonance of Andreev reflection. The spin accumulation in each of the two QDs can be controlled by the gate voltage. The sign of the spin accumulation is also controllable by tuning the bias. Furthermore, tuning the magnetic flux can exchange the amplitude of the spin accumulation in the two QDs. The Aharonov-Bohm oscillation effects also provides a way to control the spin accumulation of each QD.  相似文献   

18.
Lapo Casetti 《Physica A》2007,384(2):318-334
The phenomenon of partial equivalence of statistical ensembles is illustrated by discussing two examples, the mean-field XY and the mean-field spherical model. The configurational parts of these systems exhibit partial equivalence of the microcanonical and the canonical ensemble. Furthermore, the configurational microcanonical entropy is a smooth function, whereas a nonanalytic point of the configurational free energy indicates the presence of a phase transition in the canonical ensemble. In the presence of a standard kinetic energy contribution, partial equivalence is removed and a nonanalyticity arises also microcanonically. Hence in contrast to the common belief, kinetic energy, even though a quadratic form in the momenta, has a nontrivial effect on the thermodynamic behaviour. As a by-product we present the microcanonical solution of the mean-field spherical model with kinetic energy for finite and infinite system sizes.  相似文献   

19.
Jianhua Zhang  Yougui Wang 《Physica A》2009,388(10):2020-2024
By analyzing the data of top 500 Chinese firms from the year 2002 to 2007, we reveal that their revenues and ranks obey the Zipf’s law with exponent of 1 for each year. This result confirms the universality of firm size character which has been presented in many other empirical works, since China possesses a unique ideological and political system. We offer an explanation of it based on a simple economic model which takes production and capital accumulation into account.  相似文献   

20.
By means of variable temperature scanning tunneling microscope we studied the morphology and electronic structure of Pb films grown on Cu(1 1 1). Due to the spatial confinement of electrons, the islands display quantized energy levels. At 300 K, Pb forms 3D nanostructures with magic heights, that correspond to islands having a quantum well state (QWS) far from the Fermi energy. Below 100 K Pb grows in a quasi-layer-by-layer fashion. The QWS that develop in the films determine their total energy and, accordingly, their thermal stability. Films of particularly magic thickness are stable upon heating to 300 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号