首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
By using diamond anvil cell (DAC), high-pressure Raman spectroscopic studies of orthophosphates Ba3(PO4)2 and Sr3(PO4)2 were carried out up to 30.7 and 30.1 GPa, respectively. No pressure-induced phase transition was found in the studies. A methanol:ethanol:water (16:3:1) mixture was used as pressure medium in DAC, which is expected to exhibit nearly hydrostatic behavior up to about 14.4 GPa at room temperature. The behaviors of the phosphate modes in Ba3(PO4)2 and Sr3(PO4)2 below 14.4 GPa were quantitatively analyzed. The Raman shift of all modes increased linearly and continuously with pressure in Ba3(PO4)2 and Sr3(PO4)2. The pressure coefficients of the phosphate modes in Ba3(PO4)2 range from 2.8179 to 3.4186 cm−1 GPa−1 for ν3, 2.9609 cm−1 GPa−1 for ν1, from 0.9855 to 1.8085 cm−1 GPa−1 for ν4, and 1.4330 cm−1 GPa−1 for ν2, and the pressure coefficients of the phosphate modes in Sr3(PO4)2 range from 3.4247 to 4.3765 cm−1 GPa−1 for ν3, 3.7808 cm−1 GPa−1 for ν1, from 1.1005 to 1.9244 cm−1 GPa−1 for ν4, and 1.5647 cm−1 GPa−1 for ν2.  相似文献   

2.
Synthesis of apatites, Na1−xKxPb4(PO4)3 0≤x≤1, with anion vacancy was carried out using solid state reactions. The solid solution of apatite-type structure crystallizes in the hexagonal system, space group P63/m (No 176). Rietveld refinements showed that 75% of Pb2+ cations are located in the (6h) sites; the ninefold coordination sites (4f) are equally occupied by the other 25% lead cations and the K+ and Na+ monovalent ions.The structure can be described as built up from [PO4]3− tetrahedra and Pb2+ of sixfold coordination cavities (6h positions), which delimit void hexagonal tunnels running along [0 0 1]. These tunnels are connected by cations of mixed sites (4f) half occupied by Pb2+ and half by Na+/K+ mixed cations. The assignment of the observed frequencies in the Raman and infrared spectra is discussed on the basis of a unit cell group analysis and by comparison with other apatites. The Raman modes of all the compositions show some linear shifts of the frequencies as a function of the composition toward lower values due the substitutions of Na+ by K+ with a larger radius.  相似文献   

3.
Field cooling (FC) poled/unpoled PMN-29%PT single crystal and room temperature (RT) poled/unpoled PMN-34.5%PT textured ceramic were investigated between ∼0 and 300 °C by thermal expansion, dielectric and Raman spectroscopy. New phase transitions are evidenced at 40, 91 and 180 °C in the case of FC PMN-29%PT as well as at 70 and 200 °C for RT PMN-34.5%PT and their order is discussed. The physical properties of the textured ceramics are rather similar to the ones observed for the single crystals that make them low-cost alternative for a wide range of applications. However, the temperatures and character of the phase transitions strongly depend on the kind of the poling conditions. Temperature dependences of the Raman line parameters show that the NbO6 octahedra remain stable during temperature increase, while TiO6 ones evolve quasi-continuously. The step transitions of the Pb2+ ion sublattice are evidenced. This suggests that the TiO6 and Pb2+ sublattices are especially coupled. The role of the TiO6 clusters on the structural phase transitions and dielectric properties of the PbMg1/3Nb2/3O3-xPbTiO3 (PMN-PT) system is discussed. The presence of the Raman modes above the maximum dielectric permittivity reveals that the local symmetry is lower than the cubic one (Pm3m). The decrease of the Raman line intensities vs. temperature indicates precisely the continuous evolution of the local symmetry towards the cubic one. The temperature evolution of the Rayleigh wing parameters appears sensitive to the phase transitions’ presence.  相似文献   

4.
Temperature-dependent polarized Raman spectra of KGd(WO4)2: (Er, Yb) single crystals have been analyzed over the 77-292 K temperature range. The Ag and Bg spectra obtained are discussed in terms of factor group analysis. The spectra have been found to reveal the bands related to internal and external vibrations of WO42−, WOW and WOOW molecular groups. Strong depolarization of the majority of the Raman bands has been observed in the whole temperature range. Some anomalies in the spectral parameters of selected Raman bands below 175 K have been discussed in terms of the local distortion of WO42− ions in KGd(WO4)2: (Er, Yb) crystals.  相似文献   

5.
Raman spectra of as-grown and vapor transport equilibration (VTE) treated Er:LiNbO3 crystals, which have different cut orientations (X-cut and Z-cut), different Er-doping levels (Er:(0.2, 0.4 and 2.0 mol%)LiNbO3) and different VTE durations (80, 120, 150 and 180 h), were recorded at room temperature in the wavenumber range 50-1000 cm−1 by using backward scattering geometry. The spectra were attributed on the basis of their spectral features and the previous experimental work and the most recent theoretical progress in lattice dynamics on pure LiNbO3. In comparison with the pure crystal the most remarkable effect of Er-doping on the Raman spectrum is observed for the E(TO9) mode. It does not appear at 610 cm−1 as the pure crystal, but locates at 633 cm−1. In addition, the doping also results in the lowering of the Raman phonon frequency, the broadening of the Raman linewidth and the changes of the relative Raman intensity of some peaks. The VTE treatment results in the narrowing of the linewidth, the recovery of the lowered phonon frequency and the further changes of relative Raman intensity. The narrowing of Raman linewidth indicates that the VTE processing has brought these crystals closer to stoichiometric composition. The VTE treatment has induced the formation of a precipitate ErNbO4 in the high-doped Er(2.0%):LiNbO3 crystals whether X- or Z-cut. For these precipitated crystals, besides above linewidth and phonon frequency features, they also display more significant Raman intensity changes compared with those not precipitated crystals. In addition, a slight mixing between A1(TO) and E(TO) spectra is also observed for these precipitated crystals. Above doping and VTE effects on Raman spectra were quantitatively or qualitatively correlated with the characteristics of the crystal structure and phonon vibrational system.  相似文献   

6.
Basic structural aspects about the layered hexaniobate of K4Nb6O17 composition and its proton-exchanged form were investigated mainly by spectroscopic techniques. Raman spectra of hydrous K4Nb6O17 and H2K2Nb6O17·H2O show significant modifications in the 950-800 cm−1 region (Nb-O stretching mode of highly distorted NbO6 octahedra). The band at 900 cm−1 shifts to 940 cm−1 after the replacement of K+ ion by proton. Raman spectra of the original materials and the related deuterated samples are similar suggesting that no isotopic effect occurs. Major modifications were observed when H2K2Nb6O17 was dehydrated: the relative intensity of the band at 940 cm−1 decreases and new bands seems to be present at about 860-890 cm−1. The H+ ions should be shielded by the hydration sphere what preclude the interaction with the layers. Removing the water molecules, H+ ions can establish a strong interaction with oxygen atoms, decreasing the bond order of Nb-O linkage. X-ray absorption near edge structure studies performed at Nb K-edge indicate that the niobium coordination number and oxidation state remain identical after the replacement of potassium by proton. From the refinement of the fine structure, it appears that the Nb-Nb coordination shell is divided into two main contributions of about 0.33 and 0.39 nm, and interestingly the population, i.e., the number of backscattering atoms is inversed between the two hexaniobate materials.  相似文献   

7.
The ternary MoO3-La2O3-B2O3 glasses containing a large amount of MoO3 (10-50 mol%) are prepared, and their structure and crystallization behavior are examined from the Raman scattering spectrum measurements and X-ray diffraction analyses. It is found that the glass transition and crystallization temperatures and the thermal stability against crystallization decrease with increasing MoO3 content. It is suggested that the main coordination state of Mo6+ ions in the glasses is isolated (MoO4)2− tetrahedral units giving strong Raman bands at 830-860 and 930 cm−1. It is found that the crystalline phases in the crystallized glasses are mainly LaMoBO6 and LaB3O6, and the main crystallization mechanism in MoO3-La2O3-B2O3 glasses is surface crystallization. LaMoBO6 crystals are found to give strong Raman bands at 810-830 and ∼910 cm−1.  相似文献   

8.
BaTiO3−x and Ba0.95La0.05TiO3−x nanoceramics showing colossal permittivity values have been characterized. While starting powders are of cubic symmetry, X-ray and Neutron Diffraction techniques and Raman Spectroscopy measurements show that the one-step processed ceramics obtained by Spark Plasma Sintering (SPS) contain cubic and tetragonal phases. Rather large oxygen deficiency determined in such ceramics by Electron Micro Probe analysis and Electron Energy Loss Spectroscopy analyzes is explained by the presence of Ti3+, as evidenced by X-ray Photoelectron Spectroscopy measurements. Transmission Electron Microscopy and High Resolution Transmission Electron Microscopy show that these ceramics contain 50-300 nm grains, which have single-domains, while grain boundaries are of nanometer scale. Colossal permittivity values measured in our dense nanoceramics are explained by a charge hopping mechanism and an interfacial polarization of a large number of polarons generated after sample reduction in SPS apparatus.  相似文献   

9.
P-doped TiO2 nanoparticles were synthesized through hydrolysis and condensation of Ti(OC2H5)4 with H3PO4 additions. Effects of [H3PO4]/[Ti(OC2H5)4] molar ratios on the anatase-to-rutile phase transformation, crystallite sizes, surface areas, and photocatalytic abilities of the gel-derived P-doped TiO2 were investigated. The P-doped TiO2 nanoparticles prepared by [H3PO4]/[Ti(OC2H5)4]=0.03 were composed of anatase monophase even at 900 oC and possessed very strong photocatalytic ability. Kinetic studies on the P-doped TiO2 to photocatalytically decompose methylene blue under irradiation of 365 nm UV light found that the P-doped TiO2 prepared by [H3PO4]/[Ti(OC2H5)4]=0.03 and calcined at 800 oC had the specific reaction rates, at 25 °C, kA,m=0.76 m3/(kg min) (based on the mass of P-doped TiO2) and kA,BET=46.2×10−6 m/min (based on the BET surface area of P-doped TiO2), which is superior to the performance of a commercial product, P25 (kA,m=0.22 m3/(kg min) and kA,BET=4.8×10−6 m/min).  相似文献   

10.
We report plane-polarised Raman spectra from YBa2Cu4O8 single crystals between 300 and 10 K. In the normal state we observe a gap-like depletion of intensity from the electronic continuum extending to around 1200 cm−1 with an onset temperature of around 225 K. We remove the phonons and pseudogap depletion from the spectra using a simple model and recover a characteristic high-Tc superconductor continuum. In the superconducting state, intensity returns to the continuum in the form of a very broad pair-breaking peak.  相似文献   

11.
Infrared and Raman spectra of polycrystalline KUO2PO4 · 3 H2O (KUP) and its isotopic derivatives KUO2P18O4 · 3 H2O and KUO2PO4 · 3 D2O have been investigated in the 4000-10-cm?1 range at different temperatures. An assignment of the bands in terms of UO2, PO4 and H2O vibrations has been proposed. Combined differential scanning calorimetry and spectroscopic data show two diffuse phase transitions near 130 and 230 K. Comparison of the vibrational spectra of phase I at 300 K and phase IV at 100 K indicates that ordering of the water molecules with subsequent ordering of PO4 tetrahedra on a site with lower symmetry appears to be the main mechanism responsible for the phase transformation. All the six O-H distances of water molecules in phase IV are found to be crystallographically nonequivalent. Conducting ion frequencies and the corresponding force constants have been determined for the analogous compounds MUP with M = K+, Na+, Ag+, NH+4, Tl+ and H3O+ and compared with other properties of these ionic conductors. Conductivity mechanisms in these materials are discussed.  相似文献   

12.
Infrared reflection and polarized Raman scattering spectra of cubic Td6 Bi4Ge3O12 single crystals were recorded, allowing the classification of the observed phonon modes into the different allowed symmetry. There is a good agreement with group theoretical predictions, since 25 phonon modes are localized, among the expected 27 ones. An assignment in terms of the GeO4 “tetrahedra” vibrations is tentatively given and discussed.  相似文献   

13.
Investigations of EuGa2S4 have been done on the photoluminescence (PL) related to the transition between 4f65d and 4f7 configuration of the Eu2+ ion and its excitation (PLE) spectra, Raman scattering and infrared absorption. The energies of phonons coupled to the ground and the excited states of the transition are analyzed to be 34 and 19 meV from the shapes of the PL and PLE bands, respectively. The former corresponds to the energy of the Raman line showing the highest intensity. The latter is close to the value obtained from analysis of the temperature dependence of the half width of the PL band. These correspondences indicate that the relevant emission of EuGa2S4 surely has phonon-terminated character.  相似文献   

14.
Sintered ceramic powders of calcium-doped lead titanate [Pb1−xCaxTiO3] ceramics with different Ca dopant concentration in the range (x=0-0.35) have been prepared using a sol-gel chemical route. The sol-gel technique is known to offer better purity and homogeneity, and can yield stoichiometric powders with improved properties at relatively lower processing temperature in comparison to conventional solid-state reaction. X-ray diffraction (XRD) and Raman spectroscopy studies have been carried out to identify the crystallographic structure and phase formation. The infrared absorption spectra in the mid-IR region (400-4000 cm−1) show the band corresponding to the Ti-O bond at ∼576 cm−1 and is found to shift to a higher wave number 592 cm−1 with increasing Ca content. The dielectric properties as a function of frequency, and phase transition studies on sintered ceramic Pb0.65Ca0.35TiO3 has been investigated in detail over a wide temperature range 30-600 °C and the results are discussed.  相似文献   

15.
Raman spectra of Ba6−3xSm8+2xTi18O54 solid solution were investigated as the function of x and sintering time. Reasonable explanations were provided about the Raman shifts and their intensities at 1013, 590, 751, 280, 232 cm−1. 1013 cm−1 demonstrates the existence of BaCO3 phase in solid solution, 590 cm−1 is the symmetric stretching mode of the basal oxygens of the octahedral; 280 and 232 cm−1 are the symmetric stretching modes resulted from the tilt of octahedral when large cation sites are Sm3+ and Ba2+. The shoulder peak appearing around 302 cm−1 is related to the vacancy produced by the unequal valence of Sm3+ and Ba2+.  相似文献   

16.
The infrared (IR) and 57Fe-Mössbauer spectra of Fe3IIFe4III(AsO4)6 were recorded and analyzed on the basis of its structural characteristics. The IR spectrum presents a high complexity, showing an important number of bands and splittings, as a consequence of the presence of three structurally independent AsO43− groups. The analysis of the four quadrupole signals shown by the Mössbauer spectrum allowed to attain a detailed insight into the cation distribution over the available crystallographic sites. The alternating current susceptibility measurements indicate a paramagnetic to ferrimagnetic transition in the material at about 59 K.  相似文献   

17.
Temperature Raman scattering studies were performed for CaAl0.5Ta0.5O3 crystal. This material features NaCl-type ordering of Al3+ and Ta5+ ions at the B-site superimposed onto bbc+ octahedral tilting. Because of the existing twin-related domains in crystal structure, the micro-Raman measurements were carried out at room temperature. Some differences in Raman spectra obtained using macro- and micro-Raman system were revealed. Most of the Raman modes show monotonous red-shift with the increase in temperature. Only the cubic-like fully symmetric A1g mode slightly increases its frequency with an increase in temperature. There are no uncontinuous changes of mode frequency in the temperature range studied. It indicates the stable character of static distortions of crystal structure relying on changes of octahedra tilt angle.  相似文献   

18.
Middle infrared absorption, Raman scattering and proton magnetic resonance relaxation measurements were performed for [Zn(NH3)4](BF4) in order to establish relationship between the observed phase transitions and reorientational motions of the NH3 ligands and BF4 anions. The temperature dependence of spin-lattice relaxation time (T1(1H)) and of the full width at half maximum (FWHM) of the bands connected with ρr(NH3), ν2(BF4) and ν4(BF4) modes in the infrared and in the Raman spectra have shown that in the high temperature phase of [Zn(NH3)4](BF4)2 all molecular groups perform the following stochastic reorientational motions: fast (τR≈10−12 s) 120° flips of NH3 ligands about three-fold axis, fast isotropic reorientation of BF4 anions and slow (τR≈10−4 s) isotropic reorientation (“tumbling”) of the whole [Zn(NH3)4]2+ cation. Mean values of the activation energies for uniaxial reorientation of NH3 and isotropic reorientation of BF4 at phases I and II are ca. 3 kJ mol−1 and ca. 5 kJ mol−1, respectively. At phases III and IV the activation energies values for uniaxial reorientation of both NH3 and of BF4 equal to ca. 7 kJ mol−1. Nearly the same values of the activation energies, as well as of the reorientational correlation times, at phases III and IV well explain existence of the coupling between reorientational motions of NH3 and BF4. Splitting some of the infrared bands at TC2=117 K suggests reducing of crystal symmetry at this phase transition. Sudden narrowing of the bands connected with ν2(BF4), ν4(BF4) and ρr(NH3) modes at TC3=101 K implies slowing down (τR?10−10 s) of the fast uniaxial reorientational motions of the BF4 anions and NH3 ligands at this phase transition.  相似文献   

19.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

20.
A high-pressure structural study of SrCeO3 has been performed at room temperature by Raman spectroscopy and X-ray diffraction up to 32 and 45 GPa, respectively. A first-order reversible phase transition is observed at about 12 GPa in both techniques. A second weak structural change, taking place between 18 and 25 GPa, can be suspected from Raman data. The increase in the number of Raman bands and diffraction lines is an indication that the symmetry is lowered and the compound does not evolve towards the ideal cubic perovskite structure. A Rietveld analysis of X-ray data was performed for the low-pressure phase and the atomic positions and the cell lattice parameters variations are reported in this paper. The volume compressibility derived from Raman modes (5.6×10−12 Pa−1), involving mainly bond-stretching for each type of polyhedron, is found to be close to the one obtained from volume cell variations measured by X-ray diffraction (7.9×10−12 Pa−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号