首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
CuInGeSe4 quaternary compounds are known to have a chalcopyrite-like structure and have band gaps of about 1.3 eV, suitable for optimum conversion efficiency for solar cells. We have prepared the CuInGeSe4 thin films by the selenization method using the Cu-In-Ge evaporated layer precursors. The analyses of X-ray diffraction show that the single phase of CuInGeSe4 is obtained by the selenization of precursors at 450-500 °C. The SEM observation of film surface shows that the grain sizes are in the order of 1-2 μm. The band gaps of selenized films close to 1.6 eV are wider than that of bulk crystals (about 1.3 eV). These films have p-type conduction and higher electrical resistivities than more 105 Ω cm at room temperature.  相似文献   

2.
CuInSe2 thin films with typical 1.0 eV gap energy and tetragonal chalcopyrite structure have been obtained on soda–lime glass substrates by the reaction of sequentially evaporated Cu and In layers with elemental selenium vapor, at 500 °C in flowing Ar. When analogous deposition and reaction processes were performed on Al:ZnO coated glasses, some increment in the band gap energy and diminution in the crystalline interplanar spacings have been detected for the resulting films with an extent that depends on the Cu/In atomic ratio of the evaporated precursor layers. This fact has been related to Zn incorporation into the selenized film, with quaternary (CuIn)1−xZn2xSe2 compound formation that is influenced by the presence of copper selenide phases during the reaction process. Such deductions are supported by the optical, structural and compositional characterizations that have been performed comparatively on samples prepared by selenization of evaporated metallic precursors with two different Cu/In ratios (0.9 and 1.1) on bare and Al:ZnO coated glass substrates.  相似文献   

3.
Highly adhesive bismuth oxide thin films on glass have been prepared by air oxidation of vacuum evaporated bismuth thin films at various temperatures. The transmittance, optical band gap, refractive index and adhesion show temperature and oxidation time effects. The films show a direct band gap between 2 and 2.5 eV. The refractive indices are in the range 1.854-1.991. The transmittances of the bismuth oxide films are quite high in a large wavelength range. These bismuth oxide films can have potential use in optical waveguides.  相似文献   

4.
Thin Cd2Nb2O7 films were grown on single-crystal p-type SiO2/Si substrates by the metallo-organic decomposition (MOD) technique. The films were investigated by X-ray diffraction, X-ray energy-dispersive spectroscopy, and field emission scanning electron microscopy, and showed a single phase (cubic pyrochlore), a crack-free spherical grain structure, and nanoparticles with a mean size of about 68 nm. A Cauchy model was also used in order to obtain the thickness and index of refraction of the stack layers (transparent layer/SiO2/Si) by spectroscopic ellipsometry (SE). The dielectric constant (K) of the films was calculated to be about 25 from the capacitance-voltage (C-V) measurements.  相似文献   

5.
When amorphous silicon films deposited on glass by physical or chemical vapor deposition are annealed, they undergo crystallization by nucleation and growth. The growth rate of Si crystallites is the highest in their 〈111〉 directions along or nearly along the film surface. The directed crystallization is likely to develop the 〈110〉//ND or 〈111〉//ND oriented Si crystallites. As the annealing temperature increases, the equiaxed crystallization increases, which in turn increases the random orientation. When amorphous Si is under a stress of the order of 0.1 GPa at about 540 °C, the tensile stress increases the growth rate of Si grains, whereas the compressive stress decreases the growth rate. However, the crystal growth rate increases with the increasing hydrostatic pressure, when the pressure is of the order of GPa at 530–540 °C. These phenomena have been discussed based on the directed crystallization model advanced before, which has been further elaborated.  相似文献   

6.
We report on scanning tunneling microscopy results of thin dysprosium-silicide layers formed on Si(1 1 1). In the submonolayer regime, both a and a 5 × 2 superstructure were found. Based on images taken at different tunneling conditions, a structure model could be developed for the superstructure. For one monolayer, a 1 × 1 superstructure based on hexagonal DySi2 was observed, while several monolayers thick films are characterized by a superstructure from Dy3Si5.  相似文献   

7.
Density functional theory (DFT) with LDA and GGA have been employed to study the interface and thin film properties of NaCl on a Ge(0 0 1) surface. The atomic and electronic structures of thin NaCl films from one to ten monolayers were analyzed. The layer adsorption energies show that a quasi-crystalline (0 0 1) fcc NaCl film is built up via a layer-by-layer growth mode with NaCl thickness above 2 ML. Simulated STM images show a well-resolved (1 × 1) NaCl atomic structure for sample bias voltage Vs < −2.5 V and the bright protrusions should be assigned to the Cl ions of the NaCl film. The Ge substrate dimer is reserved and buckled like a clean Ge(0 0 1)-p(2 × 2) surface as the result of weak interface interaction between the dangling bonds coming from valence π states of the Ge substrate and the 3p states of the interfacial Cl ion. These results are consistent with the experiments of STM, LEED and EELS.  相似文献   

8.
The growth of para-sexiphenyl thin films by organic molecular beam epitaxy (OMBE) on mica(0 0 1) was investigated. The morphology of the films was qualitatively and quantitatively analyzed by atomic-force microscopy. Synchrotron radiation was used in order to extract information about orientation of the individual molecules with respect to the substrate. Controlling the growth environment inside the growth chamber allowed to reproduce one-dimensional film morphologies with partially oriented crystallite chains usually obtained by hot wall epitaxy (HWE). Following a dedicated pregrowth procedure results in terraces of upright standing molecules so far not obtained. Phase imaging was used to clearly distinguish film and substrate.  相似文献   

9.
We present experimental results on the structural and magnetic properties of series of Fe thin films evaporated onto Si(1 1 1), Si(1 0 0) and glass substrates. The Fe thickness, t, ranges from 6 to110 nm. X-ray diffraction (XRD) and atomic force microscopy (AFM) have been used to study the structure and surface morphology of these films. The magnetic properties were investigated by means of the Brillouin light scattering (BLS) and magnetic force microscopy (MFM) techniques. The Fe films grow with (1 1 0) texture; as t increases, this (1 1 0) texture becomes weaker for Fe/Si, while for Fe/glass, the texture changes from (1 1 0) to (2 1 1). Grains are larger in Fe/Si than in Fe/glass. The effective magnetization, 4πMeff, inferred from BLS was found to be lower than the 4πMS bulk value. Stress induced anisotropy might be in part responsible for this difference. MFM images reveal stripe domain structure for the 110 nm thick Fe/Si(1 0 0) only.  相似文献   

10.
Ordering of submonolayer iron phthalocyanine (FePc) molecules deposited on Ag(1 1 1) was investigated using scanning tunneling microscopy. The room temperature deposition of FePc alone, without any annealing, results in no ordered overlayers. However, posterior annealing the substrate to 475 K leads to the formation of a two-dimensional oblique lattice with the lattice constants of 16.2 ± 0.3 Å and the angle of 78 ± 1° between them. The resulting FePc lattice is commensurate to the substrate lattice. In addition, the nearest neighbor distance in the lattice is significantly increased through a distinctive molecular orientation of the FePc molecules within the unit cell. The commensurate lattice with a large intermolecular distance is in sharp contrast to that observed from a close-packed square lattice that many other metallo-phthalocyanine molecules often self-assemble into. A possible reasoning behind this intriguing structure is discussed.  相似文献   

11.
Porous Ni-YSZ (YSZ—yttria-stabilized zirconia) films were fabricated by reactive co-sputtering of a Ni and a Zr-Y target, followed by sequentially annealing in air at 900 °C and in vacuum at 800 °C. The Ni-YSZ films comprised small grains and pores that were tens of nanometers in size. The porous Ni-YSZ films were used as an anode on one side of a YSZ electrolyte disc and a La0.7Sr0.3MnO3 thick film was used as a cathode on the other side of the disc to form solid oxide fuel cells (SOFCs). The voltage-current curves of the SOFCs with single- and a triple-layered porous anodes were measured in a single-chamber configuration, in a mixture of CH4 and air (CH4:O2 volume ratio=2:1). The maximum power density of the SOFC using the single-layered porous Ni-YSZ thin films as the anode was 0.38 mW cm−2, which was lower than that of 0.76 mW cm−2, obtained using a screen-printed Ni-YSZ thick anode. The maximum power density of the SOFC with a thin anode was increased, but varied between 0.6 and 1.14 mW cm−2 when a triple-layered porous Ni-YSZ anode was used.  相似文献   

12.
We report NiO nanowall thin films prepared by a facile hydrothermal synthesis method and their electrochromic application. The as-prepared porous nanowall NiO thin films show a highly porous structure built up by many interconnected nanoflakes with a thickness of about 30 nm. The electrochromic performances of the NiO films are characterized by means of UV–vis spectroscopy and cyclic voltammetry (CV) measurements. The effect of the annealing temperature on electrochromic properties is discussed. The NiO nanowall film annealed at 300 °C exhibits much better electrochromic performance than those counterparts annealed at higher temperature. The film annealed at 300 °C exhibits a noticeable electrochromism with reversible color changes from transparent to brown dark and presents a transmittance variation with 77% at 550 nm. The NiO nanowall film also shows good reaction kinetics with fast switching speed, and the coloration and bleaching times are 3 s and 4 s, respectively. The improved electrochromic performances are due to the porous morphological characteristics with fast ion and electron transfer resulting in fast reaction kinetics and high color contrast.  相似文献   

13.
PLIE was used for rapid crystallisation of a-SiGeC films deposited by LCVD on Si(1 0 0) substrates. HRTEM study of thin films grown with several laser energies shows that the combination of the two laser techniques gives an almost completely crystallised alloy, even for the lowest laser fluence. Island formation is observed below a certain threshold of fluence (about 450 mJ/cm2). In the case of the lowest energy (100 mJ/cm2) the material was partially crystallised (with the crystalline material being the predominant state), to a nanocrystalline alloy with a considerable amount of epitaxialy grown grains and with grain sizes of several tens of nanometers. Above the threshold of 450 mJ/cm2 a rather smooth thin film is grown. The crystallisation is almost complete and the alloy is grown in an almost perfect epitaxial way.  相似文献   

14.
We studied the low temperature (T ? 130 K) growth of Ag on Si(0 0 1) and Si(1 1 1) flat surfaces prepared by Si homo epitaxy with the aim to achieve thin metallic films. The band structure and morphology of the Ag overlayers have been investigated by means of XPS, UPS, LEED, STM and STS. Surprisingly a (√3 × √3)R30° LEED structure for Ag films has been observed after deposition of 2-6 ML Ag onto a Si(1 1 1)(√3 × √3)R30°Ag surface at low temperatures. XPS investigations showed that these films are solid, and UPS measurements indicate that they are metallic. However, after closer STM studies we found that these films consists of sharp Ag islands and (√3 × √3)R30°Ag flat terraces in between. On Si(0 0 1) the low-temperature deposition yields an epitaxial growth of Ag on clean Si(0 0 1)-2 × 1 with a twinned Ag(1 1 1) structure at coverage’s as low as 10 ML. Furthermore the conductivity of few monolayer Ag films on Si(1 0 0) surfaces has been studied as a function of temperature (40-300 K).  相似文献   

15.
Zinc oxide (ZnO) films were deposited on glass substrates by the sol-gel dip coating method using acrylamide route. The films were characterized by X-ray diffraction studies which indicated wurtzite structure. Optical absorption measurements indicated band gap in the range 3.17-3.32 eV. XPS studies indicated the formation of ZnO. The resistivity of the films were in the range 1000-10,000 ohm cm.  相似文献   

16.
The solid-phase epitaxial growth process and surface structure of MnSi on Si(1 1 1) were investigated by coaxial impact-collision ion scattering spectroscopy (CAICISS) and atomic force microscopy (AFM). For the Si(1 1 1) sample deposited with 30 monolayers (ML) of Mn at room temperature, the intermixing of Mn and Si gradually started at 100 °C and reached equilibrium at approximately 400 °C. At this equilibrium state, the Mn atoms were transformed into crystalline MnSi film. Further annealing caused the desorption of Mn atoms. We identified the structure of MnSi as cubic B20 and the crystallographic orientation relationships as Si(1 1 1)//MnSi(1 1 1) and Si[]//MnSi[]. The MnSi(1 1 1) surface was found to have a dense Si terminating layer on its topmost surface. On the other hand, 3 ML of Mn deposited on Si(1 1 1) reacted with Si even at room temperature and formed a pseudomorphic structure. This structure was transformed into MnSi after annealing. A filmlike morphology with protrusions was observed for the sample with 30 ML of Mn, while island growth occurred for the sample with 3 ML of Mn.  相似文献   

17.
Titanium dioxide films were grown on Re(1 0 −1 0) by Ti vapor deposition in oxygen at T = 830 K and studied by means of low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), low-energy ion scattering (LEIS) and X-ray diffraction (XRD). The Ti oxide stoichiometry was determined by XPS as Ti:O = 1:2, with the Ti oxidation state (4+). The TiO2 growth was monitored by means of LEED as a function of film thickness. Extending the coverage from the submonolayer into the multilayer regime gives rise to a p(2 × 2) pattern, a (poorly ordered) (1 × 1), and, finally, a stable (2 × 2) structure, the latter being associated with a homogeneous TiO2 phase. For normal electron incidence, the (2 × 2) LEED pattern exhibits systematically extinguished beams at (n ± 1/2, 0) positions, indicating a glide mirror plane. The pg(2 × 2) structure could be explained by both a rutile(0 1 1)-(2 × 1) reconstructed surface and a bulk truncated brookite(0 0 1) surface. Faceting phenomena, i.e. running LEED spots, observed with thin TiO2 films point to the formation of a rutile(0 1 1)-(2 × 1) surface with two domains and {0 1 1}-(2 × 1) facets and rule out the brookite alternative. Confirmation of this assignment was obtained by an XRD analysis performed at the Berlin synchrotron facility BESSY.  相似文献   

18.
The structural, dielectric and magnetic properties of single crystalline Ba1−xBixFe0.3Zr0.7O3−δ (x=0.0-0.29) thin films have been studied. The pseudotetragonal epitaxial thin films were obtained by pulsed laser-beam deposition (PLD) on (0 0 1) SrTiO3 (STO) single-crystal substrates. The Bi substitution for the Ba ions up to an extent of x=0.18 caused a slight improvement in the leakage current properties, as well as an enhancement of the apparent dielectric constant. The saturation magnetization of the films was significantly decreased following Bi substitution. These changes were thought to be related to the increase in oxygen deficiencies in the films. The effect of the Bi substitution on the dielectric and magnetic properties was analyzed in conjunction with the change in valence value of the Fe ions.  相似文献   

19.
The past few years have seen a dramatic increase in the study of organic thin-film systems that are based on silicon-carbon covalent bonds for bio-passivation or bio-sensing applications. This approach to functionalizing Si wafers is in contrast to gold-thiol or siloxane chemistries and has been shown to lead to densely packed alkyl monolayers. In this study, a series of alkyl monolayers [CH3(CH2)nCH=CH2; n = 7, 9, 11, 13, 15] were directly covalent-linked to Si(1 1 1) wafers. The structures of these monolayers were studied using X-ray reflectometry (XRR) and AC impedance spectroscopy. Both techniques are sensitive to the variation in thickness with each addition of a CH2 unit and thus provide a useful means for monitoring molecular-scale events. The combination of these techniques is able to probe not only the thickness, but also the interfacial roughness and capacitance of the layer at the immobilized surface with atomic resolution. Fundamental physical properties of these films such as chain canting angles were also determined.  相似文献   

20.
The structural and optical properties of as-deposited and γ-rays irradiated 2-(2,3-dihydro-1,5dimethyl-3-oxo-2-phenyl-1H-pyrazol-4-ylimino)-2-(4-nitrophenyl)acetonitrile (DOPNA) thin films have been reported. The structural properties of as-deposited and γ-rays irradiated DOPNA thin films are characterized by Fourier transformation infrared, X-ray diffraction and transmission electron microscope techniques. The transmittance, T(λ), and reflectance, R(λ), are measured at the normal incidence of light by a double beam spectrophotometer in the wavelength range 200-2200 nm. The refractive and absorption indices have been calculated. The dispersion parameters such as dispersion energy, oscillator energy and dielectric constant at high frequency are evaluated. The data of the absorption coefficient are analyzed in order to determine the type of inter-band electronic transitions and the optical band gap of the films. Other optical absorption parameters, namely, the extinction molar coefficient, oscillator strength and the electric dipole strength, are also calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号