首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
(Pb,Ca)TiO3 (PCT) thin films have been deposited on Pt/Ti/SiO2/Si substrate by metal-organic decomposition (MOD) technique. The film processing parameters such as drying and annealing temperatures have been optimized to obtain good-quality PCT films. Compositional analysis of the film has been studied by X-ray photoelectron spectroscopy (XPS). The effect of the annealing temperature on the crystalline structure, microstructure and electrical properties have been investigated by X-ray diffraction, atomic force microscopy (AFM) and impedance analyzer, respectively. Amorphous PCT films form at 350 °C and crystallize in the perovskite phase following the isothermal annealing at ?650 °C for 3 h in oxygen ambient. Typical tetragonal structure of the PCT film is evidenced from X-ray diffraction pattern. The grain size in the PCT films increases with an increase in annealing temperature. Significant improvement in the dielectric constant value is observed as compared to other reported work on PCT films. The observed dielectric constant and dissipation factor at 100 kHz for 650 °C annealed PCT films are 308 and 0.015, respectively. The correlation of the film microstructural features and electrical behaviors is described.  相似文献   

2.
Single-phase perovskite structure Pb1−xBaxTiO3 thin films (x=0.30, 0.50 and 0.70) were deposited on Pt/Ti/SiO2/Si substrates by the spin-coating technique. The dielectric study reveals that the thin films undergo a diffuse type ferroelectric phase transition, which shows a broad peak. An increase of the diffusivity degree with the increasing Barium contents was observed, and it was associated to a grain decrease in the studied composition range. The temperature dependence of the phonon frequencies was used to characterize the phase transition temperatures. Raman modes persist above tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of breakdown of the local cubic symmetry by chemical disorder. The absence of a well-defined transition temperature and the presence of broad bands in some interval temperature above FE-PE phase transition temperature suggested a diffuse type phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in these thin films. The leakage current density of the PBT thin films was studied at different temperatures and the data follow the Schottky emission model. Through this analysis the Schottky barrier height values 0.75, 0.53 and 0.34 eV were obtained to the PBT70, PBT50 and PBT30 thin films, respectively.  相似文献   

3.
The orientation-dependent dielectric properties of barium stannate titanate (Ba(Sn0.15Ti0.85)O3, BTS) thin films grown on (1 0 0) LaAlO3 single-crystal substrates through sol-gel process were investigated. The nonlinear dielectric properties of the BTS films were measured using an inter-digital capacitor (IDC). The results show that the in-plane dielectric properties of BTS films exhibited a strong sensitivity to orientation. The upward shift of Curie temperature (Tc) of the highly (1 0 0)-oriented BTS thin films is believed to be attributing to a tensile stress along the in-plane direction inside the film. A high tunability of 47.03% was obtained for the highly (1 0 0)-oriented BTS films, which is about three times larger than that of the BTS films with random orientation, measured at a frequency of 1 MHz and an applied electric field of 80 kV/cm. This work clearly reveals the highly promising potential of BTS films for application in tunable microwave devices.  相似文献   

4.
Structural electrical and optical properties of AgInS2 (AIS) thin films grown by the single-source thermal evaporation method were studied. The X-ray diffraction spectra indicated that the AIS single phase was successful grown by annealing above 400 °C in air. The AIS grain sizes became large with increasing the annealing temperatures. All polycrystalline AIS thin films were sulfur-poor from the electron probe microanalysis and indicated n-type conduction by the Van der Pauw technique. It was deduced that the sulfur vacancies were dominant in the films and enhanced n-type conduction.  相似文献   

5.
Li doped (Ba,Sr)TiO3 thick films were fabricated by employing the screen printing method on the alumina (Al2O3) substrates. Interdigital capacitor patterns with seven fingers of 200 μm gap, 250 μm length were designed and screen printed on the alumina substrates. Ba0.5Sr0.5TiO3 materials, paraelectric state at the room temperature, have been chosen for the microwave devices due to high dielectric permittivity and low loss tangent, however, the sintering temperature of (Ba,Sr)TiO3 is over 1350 °C. In order to lower the sintering temperature, Li (3 wt%) was added to the (Ba,Sr)TiO3 materials. Li doped (Ba,Sr)TiO3 thick films screen printed on the alumina (Al2O3) substrates were sintered at 900 °C for 1.5 h. The structural feature was analyzed with X-ray diffraction method. Temperature dependent dielectric properties were characterized from 303 to 403 K at 1 MHz. Within the ±100 V of bias voltage, current-voltage characteristics of Li doped (Ba,Sr)TiO3 films were investigated from 303 to 403 K. Through the current-voltage characteristics, the resistivity of Li doped (Ba,Sr)TiO3 films were calculated.In this paper, the significant negative temperature coefficient of resistance (NTCR) of Li doped (Ba,Sr)TiO3 films will be presented through the activation energy fitting. Measured activation energy is approximately 0.366 eV.  相似文献   

6.
Semiconductor-like thin films were grown using metallic phthalocyanines (MPc) (M=Fe, Pb, Co) and 1,8 dihydroxiantraquinone as initial compounds. The morphology of the deposited films was studied by using scanning electron microscopy and atomic force microscopy. The powder and thin-film samples of the synthesized materials, deposited by vacuum thermal evaporation, showed the same intra-molecular bonds as in IR spectroscopy studies, which suggests that the evaporation process does not alter these bonds. The optical band gap values of C60H28N8O8Fe, C60H28N8O8Pb and C60H28N8O8Co calculated from the absorption coefficient were found to be 1.60, 1.89 and 1.75 eV, respectively, arising from non-direct transitions. The effect of temperature on conductivity was also measured in these samples. It was found that the temperature-dependent electric current in all cases showed a semiconductor behavior with conductivities in the order of 10−6 Ω−1 cm−1 where the highest value corresponded to the cobalt material. The linear dependence observed in the films implies only one type of conduction mechanism in all cases, with mean activation energies of the order of 1.55, 1.77 and 1.50 eV for iron, lead and cobalt-based thin films, respectively.  相似文献   

7.
The structural, dielectric and magnetic properties of single crystalline Ba1−xBixFe0.3Zr0.7O3−δ (x=0.0-0.29) thin films have been studied. The pseudotetragonal epitaxial thin films were obtained by pulsed laser-beam deposition (PLD) on (0 0 1) SrTiO3 (STO) single-crystal substrates. The Bi substitution for the Ba ions up to an extent of x=0.18 caused a slight improvement in the leakage current properties, as well as an enhancement of the apparent dielectric constant. The saturation magnetization of the films was significantly decreased following Bi substitution. These changes were thought to be related to the increase in oxygen deficiencies in the films. The effect of the Bi substitution on the dielectric and magnetic properties was analyzed in conjunction with the change in valence value of the Fe ions.  相似文献   

8.
Hafnium oxide (HfO2) thin films have been made by radio-frequency (rf) magnetron-sputtering onto Si(1 0 0) substrates under varying growth temperature (Ts). HfO2 ceramic target has been employed for sputtering while varying the Ts from room temperature to 500 °C during deposition. The effect of Ts on the growth and microstructure of deposited HfO2 films has been studied using grazing incidence X-ray diffraction (GIXRD), and high-resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive X-ray spectrometry (EDS). The results indicate that the effect of Ts is significant on the growth, surface and interface structure, morphology and chemical composition of the HfO2 films. Structural characterization indicates that the HfO2 films grown at Ts < 200 °C are amorphous while films grown at Ts > 200 °C are nanocrystalline. An amorphous-to-crystalline transition occurs at Ts = 200 °C. Nanocrystalline HfO2 films crystallized in a monoclinic structure with a (−1 1 1) orientation. An interface layer (IL) formation occurs due to reaction at the HfO2-Si interface for HfO2 films deposited at Ts > 200 °C. The thickness of IL increases with increasing Ts. EDS at the HfO2-Si cross-section indicate that the IL is a (Hf, Si)-O compound. The electrical characterization using capacitance-voltage measurements indicate that the dielectric constant decreases from 25 to 16 with increasing Ts. The current-voltage characteristics indicate that the leakage current increases significantly with increasing Ts due to increased ILs.  相似文献   

9.
Epitaxial (001)-oriented PbSc0.5Ta0.5O3 (PST) thin films were deposited by pulsed laser deposition. Local piezoelectric investigations performed by piezoelectric force microscopy show a dual slope for the piezoelectric coefficient. A piezoelectric coefficient of 3 pm/V was observed at voltages up to 0.8 V. However, at voltages above 0.8 V, there is a steep increase in piezoelectric coefficient mounting to 23.2 pm/V. This nonlinear piezoelectric response was observed to be irreversible in nature. In order to better understand this nonlinear behavior, voltage dependent dielectric constant measurements were performed. These confirmed that the piezoelectric non-linearity is indeed a manifestation of a dielectric non-linearity. In contrast to classical ferroelectric systems, the observed dielectric non-linearity in this relaxor material cannot be explained by the Rayleigh model. Thus the dielectric non-linearity in the PST films is tentatively explained as a manifestation of a percolation of the polar nano regions.  相似文献   

10.
Ion beam sputtering process was used to deposit n-type fine-grained Bi2Te3 thin films on BK7 glass substrates at room temperature. In order to enhance the thermoelectric properties, thin films are annealed at the temperatures ranging from 100 to 400 °C. X-ray diffraction (XRD) shows that the films have preferred orientations in the c-axis direction. It is confirmed that grain growth and crystallization along the c-axis are enhanced as the annealing temperature increased. However, broad impurity peaks related to some oxygen traces increase when the annealing temperature reached 400 °C. Thermoelectric properties of Bi2Te3 thin films were investigated at room temperature. The Bi2Te3 thin films, including as-deposited, exhibit the Seebeck coefficients of −90 to −168 μV K−1 and the electrical conductivities of 3.92×102-7.20×102 S cm−1 after annealing. The Bi2Te3 film with a maximum power factor of 1.10×10−3 Wm−1 K−2 is achieved when annealed at 300 °C. As a result, both structural and transport properties have been found to be strongly affected by annealing treatment. It was considered that the annealing conditions reduce the number of potential scattering sites at grain boundaries and defects, thus improving the thermoelectric properties.  相似文献   

11.
Nanocrystalline thin films of TiO2 were prepared on glass substrates from an aqueous solution of TiCl3 and NH4OH at room temperature using the simple and cost-effective chemical bath deposition (CBD) method. The influence of deposition time on structural, morphological and optical properties was systematically investigated. TiO2 transition from a mixed anatase–rutile phase to a pure rutile phase was revealed by low-angle XRD and Raman spectroscopy. Rutile phase formation was confirmed by FTIR spectroscopy. Scanning electron micrographs revealed that the multigrain structure of as-deposited TiO2 thin films was completely converted into semi-spherical nanoparticles. Optical studies showed that rutile thin films had a high absorption coefficient and a direct bandgap. The optical bandgap decreased slightly (3.29–3.07 eV) with increasing deposition time. The ease of deposition of rutile thin films at low temperature is useful for the fabrication of extremely thin absorber (ETA) solar cells, dye-sensitized solar cells, and gas sensors.  相似文献   

12.
BaTiO3 thin films with different thickness have been grown on Pt/Ti/SiO2/Si substrates by a modified sol-gel method. X-ray diffraction analyses show that the BaTiO3 thin films are polycrystalline. The crystalline quality of the films is improved with increasing thickness. The infrared optical properties of the BaTiO3 thin films have been investigated using an infrared spectroscopic ellipsometry in the wave number range of 800-4000 cm−1 (2.5-12.5 μm). By fitting the measured pseudodielectric functions with a three-phase model (Air/BaTiO3/Pt), and a derived classical dispersion relation for the thin films, the optical constants and thicknesses of the thin films have been simultaneously obtained. The refractive index of the BaTiO3 thin films increases and on the other hand, the extinction coefficient does not change with increasing thickness in the entirely measured wave number range. The dependence of the refractive index on the film thickness has been discussed in detail and was mainly due to both the crystalline quality of the films and packing density. Finally, the absorption coefficient was calculated in the infrared region for applications in the pyroelectric IR detectors.  相似文献   

13.
In2S3 films have been chemically deposited on ITO coated glass substrates by chemical bath deposition, using different deposition times and precursor concentrations. The bilayers are intended for photovoltaic applications. Different characterization methods have been employed: optical properties of the films were investigated from transmittance measurements, structural properties by XRD and micro-Raman, and surface morphology by SEM microscopy analysis. Also, the direct and indirect band-gaps and the surface gap states were studied with surface photovoltage spectroscopy (SPS). We proposed that electronic properties of the In2S3 samples are controlled by two features: shallow tail states and a broad band centred at 1.5 eV approximately. Their relation with the structure is discussed, suggesting that their origin is related to defects created on the S sub-lattice, and then both defects are intrinsic to the material.  相似文献   

14.
The results of gadolinium (Gd)-doped barium titanate (BaTiO3) thin films prepared by laser ablation on glass and silicon substrates are reported. Rutherford backscattering (RBS) analyses carried out on glass samples indicated the substitution of barium (Ba) by gadolinium (Gd) after annealing, leading to a film with composition Ba0.76TiGd0.01O2.5. There is a reduction in the thickness from 2.21 to 2.02 microns for as-deposited and annealed films. The films on silicon showed a higher degree of crystallinity compared to that of glass substrates due to increased annealing temperature. The average grain size calculated using the X-ray diffraction (XRD) pattern from silicon substrates was 30 nm. The film has a tetragonal structure with a “c/a” ratio of 1.03 signifying that the incorporation of Gd in BaTiO3 led to the elongation of the c-axis. The percentage transmittance reduced from 80 to 50% due to annealing and this is probably due to structural changes in the film. Swanepoel envelope method employed on the interference fringes of the transmittance pattern led to the determination of the variation of the refractive index with wavelength. Sellmier single oscillator model was applied to determine the optical constants of the films on glass substrates. Bandgap analyses carried out showed the reduction in bandgap with annealing and also the possibility that Gd incorporation has modified the film chemistry leading to the existence of direct (4.35 eV) and indirect (3.88 eV) allowed transitions in the annealed films. Dielectric property measurement carried out under ambient conditions gave a relaxation time τ of 1.6×10−4 s and conduction by small polaron with the onset of polaron conduction set at about 7 kHz. It is conjectured that these properties, especially the high refractive index and the high bandgaps, can make Gd-doped BaTiO3 a good candidate for optoelectronic applications.  相似文献   

15.
Ternary thin films of cerium titanium zirconium mixed oxide were prepared by the sol-gel process and deposited by a spin coating technique at different spin speeds (1000-4000 rpm). Ceric ammonium nitrate, Ce(NO3)6(NH4)2, titanium butoxide, Ti[O(CH2)3CH3]4, and zirconium propoxide, Zr(OCH2CH2CH3)4, were used as starting materials. Differential calorimetric analysis (DSC) and thermogravimetric analysis (TGA) were carried out on the CeO2-TiO2-ZrO2 gel to study the decomposition and phase transition of the gel. For molecular, structural, elemental, and morphological characterization of the films, Fourier Transform Infrared (FTIR) spectral analysis, X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), cross-sectional scanning electron microscopy (SEM), and atomic force microscopy (AFM) were carried out. All the ternary oxide thin films were amorphous. The optical constants (refractive index, extinction coefficient, band gap) and thickness of the films were determined in the 350-1000 nm wavelength range by using an nkd spectrophotometer. The refractive index, extinction coefficient, and thickness of the films were changed by varying the spin speed. The oscillator and dispersion energies were obtained using the Wemple-DiDomenico dispersion relationship. The optical band gap is independent of the spin speed and has a value of about Eg≈2.82±0.04 eV for indirect transition.  相似文献   

16.
This paper describes the synthesis and characterization of self-assembled organic-inorganic layered perovskite compounds, (C6H5-CnH2n-NH3)2PbBr4 (n=1-4). the effect of the number of carbon atoms of the alkyl chain length (n) on optical properties has been studied. (C6H5-CnH2n-NH3)2PbBr4 films fabricated by spin-coating are microcrystalline form, single phase and oriented with the c-axis. Crystallinity, the maximum PL intensity and the lifetime of exciton emissions varied with the number of carbon atoms. the lowest-energy exciton splits into a few fine-structure levels at low temperatures. Time-resolved photoluminescence spectra reveal that (C6H5-CnH2n-NH3)2PbBr4 shows both singlet and triplet excitons. with decreasing temperature, triplet exciton emissions become dominant for (C6H5-CnH2n-NH3)2PbBr4 (n=1-3), while (C6H5-C4H8-NH3)2PbBr4 shows mainly singlet exciton emissions. The intersystem crossing from excited singlet state to triplet state plays an important role in the relaxation process of excitons.  相似文献   

17.
Two sets of ferroelectric (Pb,La)TiO3 thin films have been prepared by a diol-based sol-gel technique by varying the heating rate to the crystallisation temperature of 650°C. Films of increasing thickness were obtained by repeating the solution deposition from 1 to 5 times. The switchable polarisation was evaluated from hysteresis loops and from the integration of the switching current transients during pulse tests, and was found to significantly depend on film thickness. Measurements of the thickness dependence of the reciprocal capacitance and Rutherford backscattering spectrometry results indicate that a layer with different dielectric permittivity, and composition for one set of films, existed next to the bottom electrode. In the one set of films it originated because of interdiffusion between the film and the substrate, while in the other set, it was linked to the tensile stress at the film/substrate interface. These layers had a reduced switchable polarisation, which caused the observed dependence of their properties on thickness.  相似文献   

18.
Pb1−xSmxTiO3 (PST) powders with x varying from 0 to 0.1 were obtained by the polymeric precursor method, a soft chemical route. The vibrational properties relating tetragonal to pseudo-cubic phase transition were studied by Raman spectroscopy. The results obtained showed that the phase transition is extremely dependent upon the samarium content and presents a diffuse behavior. Monitoring of the oxygen 2p and titanium 3d orbitals was performed by the periodic mechanical quantum method, revealing the changes that occur with the distribution and contribution of the hybrid orbitals due to the samarium influence.  相似文献   

19.
Multiferroic thin films with the general formula TiO2/BiFe1−xMnxO3 (x=0.00, 0.05, 0.10 and 0.15) (TiO2/BFMO) were synthesized on Au/Ti/SiO2/Si substrates using a chemical solution deposition (CSD) method assisted with magnetron sputtering. X-ray diffraction analysis shows the thin films contained perovskite structures with random orientations. Compared with BFMO films, the leakage current density of the TiO2/BFMO thin films was found to be lower by nearly two orders of magnitude, and the remnant polarizations were increased by nearly ten times. The enhanced ferroelectric properties may be attributed to the lower leakage current caused by the introduction of the TiO2 layer. The J-E characteristics indicated that the main conduction mechanism for the TiO2/BFMO thin film was trap-free Ohmic conduction over a wide range of electric fields (0-500 kV/cm). In addition, ferromagnetism was observed in the Mn doped BFO thin films at room temperature. The origin of ferromagnetism is related to the competition between distortion of structure and decrease of grain size and decreasing net magnetic moment in films due to Mn doping.  相似文献   

20.
Non-stoichiometric ternary chalcogenides (Zn,Fe)S were prepared in the film form by pyrolytic spray deposition technique, using air/nitrogen as the carrier gas. The precursor solution comprised of ZnCl2, FeCl2 and thiourea. The depositions were carried out under optimum conditions of experimental parameters viz. carrier gas (air/nitrogen) flow rate, concentration of precursor constituents, nozzle substrate distance and temperature of quartz substrate. The deposited thin films were later sintered in argon at 1073 K for 120 min.The structural, compositional and optical properties of the sintered thin films were studied. X-ray diffraction studies of the thin films indicated the presence of (Zn,Fe)S solid solution with prominent cubic sphalerite phase while surface morphology as determined by scanning electron microscopy (SEM) revealed a granular structure.The chemical composition of the resulting thin films as analyzed by energy dispersive X-ray analysis (EDAX) reflected the composition of the precursor solutions from which the depositions were carried out with Fe at% values ranging from 0.4 up to 33.SEM micrographs of thin films reveal that the grain sizes of the thin films prepared using air as carrier gas and N2 as carrier gas are in the vicinity of 300 and 150 nm, respectively.The diffuse transmittance measurements for thin films, as a function of wavelength reveal the dependence of direct optical band gap on Fe content and type of phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号