首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel long-lasting phosphorescence phosphor, Mn2+-activated Mg2SnO4, has been synthesized and its optical properties have been investigated. The Mg2SnO4:Mn2+ emits green light with high luminance, upon UV irradiation, centered at 499 nm from the spin forbidden transitions of the d-electrons in Mn2+ ions. The CIE chromaticity coordinates of the Mg2SnO4:Mn2+ phosphor are x=0.0875 and y=0.6083 under 254 nm UV excitation. The phosphorescence can be observed by the naked eyes (0.32 mcd/m2) in the dark clearly for over 5 h after the 5 min UV irradiation. Thermoluminescence has been studied and the mechanism of the long-lasting phosphorescence has been discussed.  相似文献   

2.
A novel blue-emitting long-lasting phosphor Sr3Al10SiO20:Eu2+,Ho3+ is prepared by the conventional high-temperature solid-state technique and their luminescent properties are investigated. XRD, photoluminescence (PL) and thermoluminescence (TL) are used to characterize the synthesized phosphors. These phosphors are well crystallized by calcinations at 1500-1600 °C for 3 h. The phosphor emits blue light and shows long-lasting phosphorescence after it is excited with 254/365 nm ultraviolet light. TL curves reveal the introduction of Ho3+ ions into the Sr3Al10SiO20:Eu2+ host produces a highly dense trap level at appropriate depth, which is the origin of the long-lasting phosphorescence in this kind of material. The long-lasting phosphorescence lasts for nearly 6 h in the light perception of the dark-adapted human eye (0.32 mcd/m2). All the results indicate that this phosphor has promising potential practical applications.  相似文献   

3.
A novel long-lasting afterglow phosphor ZrO2:Ti is prepared by the conventional solid-stated method and their luminescent properties are investigated. A bluish white strong and broad emissive band, which is attributed to originate from the recombination of electrons trapped by F+ centers and the holes created in Valence band, is observed under 254 nm UV irradiation. The identical color long afterglow, which lasts about 1 h, is found in the ZrO2:Ti phosphor after removing the 254 nm UV light. The mechanism of the long lasting phosphorescence (LLP) has been discussed based on the thermoluminescence (TL) results. The replacement of Zr by Ti produces more anion vacancies, resulting in the enhanced photoluminescence (PL) and LLP of ZrO2:Ti sample. These results indicate that ZrO2:Ti phosphor has potential promising applications.  相似文献   

4.
By introducing the Y3+ into Sr2P2O7:Eu2+, we successfully prepared a kind of new phosphor with blue long-lasting phosphorescence by the high-temperature solid-state reaction method. In this paper, the properties of Sr2P2O7:Eu2+,Y3+ were investigated utilizing XRD, photoluminescence, luminescence decay, long-lasting phosphorescence and thermoluminescence (TL) spectra. The phosphor emitted blue light that was related to the 4f65d1-8S7/2 transition of Eu2+. The bright blue phosphorescence could be observed by naked eyes even 8 h after the excitation source was removed. Two TL peaks at 317 and 378 K related to two types of defects appeared in the TL spectrum. By analyzing the TL curve the depths of traps were calculated to be 0.61 and 0.66 eV. Also, the mechanism of LLP was discussed in this report.  相似文献   

5.
Sodium europium double tungstate [NaEu(WO4)2] phosphor was prepared by the solid-state reaction method. Its crystal structure, photoluminescence properties and thermal quenching characteristics were investigated aiming at the potential application in the field of white light-emitting diodes (LEDs). The influences of Sm doping on the photoluminescence properties of this phosphor were also studied. It is found that this phosphor can be effectively excited by 394 or 464 nm light, which nicely match the output wavelengths of near-ultraviolet (UV) or blue LED chips. Under 394 or 464 nm light excitation, this phosphor exhibits stronger emission intensity than the Y2O2S:Eu3+ or Eu2+-activated sulfide phosphor. The introduction of Sm3+ ions can broaden the excitation peaks at 394 and 464 nm of the NaEu(WO4)2 phosphor and significantly enhance its relative luminance under 400 and 460 nm LEDs excitation. Furthermore, the relative luminance of NaEu(WO4)2 phosphor shows a superior thermal stability compared with the commercially used sulfide or oxysulfide phosphor, and make it a promising red phosphor for solid-state lighting devices based on near-UV or blue LED chips.  相似文献   

6.
The white-light long-lasting phosphors Y2O2S:Tb3+, Sr2+ or/and Zr4+ were prepared and studied. The white-light afterglow emission after the irradiation with 254 nm UV are composed of the blue light emission and the yellowish-green light emission, originating from the transitions of 5D37F5, 5D47F5 in Tb3+ when the Tb3+ concentration is not higher than 0.3 at%. The codoped Sr2+ and Zr4+ ions act as trap-creating ions. The afterglow can last over 21 min in the dark for Y2O2S:Tb3+0.3%, Sr2+4%, Zr4+4% after irradiation by 254 nm ultraviolet light. Y2O2S:Tb3+ may be a promising material for the development of white-light long-lasting phosphor since the Tb3+ has a high luminescent efficiency and the dominant excitation band of 4f →5d is located at 220-300 nm.  相似文献   

7.
The performance of nanophase luminophors is usually compromised by environmentally induced degradation. In this study, composites of low density polyethylene (LDPE) with various concentrations of the blue-emitting europium and dysprosium co-doped strontium aluminate (SrAl2O4:Eu2+,Dy3+) phosphor were investigated. The blue long-lasting phosphorescence of the composites was observed in the dark after removal of the excitation light. X-ray diffraction analysis revealed the presence of the SrAl2O4 phase in the composites. PL spectra of the composites have two sets of peaks, major broad bands peaking at about 4855 Å and minor ones at wavelengths between 4115 and 4175 Å, attributed to the 4f-5d transition of Eu2+. DSC and TGA results show that the introduction of the phosphor in LDPE matrix caused a slight reduction in the crystallinity of LDPE but a significant increase in the stability of the composites.  相似文献   

8.
The photoluminescence (PL) emission and excitation behavior of red-emitting Eu0.1GdxLa1.9−xTeO6 (0.02?x?0.1) powder phosphors is reported. Three dominant bands centered at 395, 466 and 534 nm characterized the excitation spectrum. Under the excitation of 395 nm UV light, the emission spectrum exhibits an intense peak centered at 616 nm corresponding to the 5D07F2 transition of Eu3+. Because the f→f transitions are located in the wavelength range of blue or near-UV range, optimized phosphor, Eu0.10Gd0.08La1.82TeO6, is a promising material for solid-state lighting based on GaN LEDs applications.  相似文献   

9.
NaEu0.96Sm0.04(MoO4)2 was prepared by the Pechini method (P phosphor) and as a comparison, also by solid-state reaction technique (S phosphor). The photo-luminescent properties, the morphology and the grain size were investigated. The phosphors show broadened excitation band around 400 nm, high intensity of Eu3+5D07F2 emission upon excitation around 400 nm, and appropriate CIE chromaticity coordinates. Intensive red light-emitting diodes (LEDs) were fabricated by combining the phosphor and a 400 nm InGaN chip for the first time, which confirm that the phosphor is a good candidate for near UV LED. The luminescent intensity of P phosphor prepared at 700 °C is near that of S phosphor prepared at 800 °C. In addition, P phosphor shows advantages of lower calcining temperature, shorter heating time, and smaller grain size. Considering all these factors, the suitable method for preparing the promising near UV LED phosphor NaEu0.96Sm0.04(MoO4)2 is recommended to be the Pechini process at 700 °C.  相似文献   

10.
A novel blue light-emitting phosphor, Eu2+-doped magnesium strontium aluminate (MgSrAl10O17:Eu2+), for plasma display panel (PDP) application was developed. X-ray diffraction (XRD) patterns disclosed that the phosphor annealed at 1500 °C for 5 h was a pure MgSrAl10O17 phase. Field emission scanning electron microscopy (FE-SEM) images showed the particle size of the phosphor was less than 3 μm. The phosphor shows strong and broad blue emission under vacuum ultraviolet (VUV) light excitation. After baking at 400-600 °C and irradiation with VUV light for 300 h, the phosphor still keep excellent VUV luminescence properties exhibiting good stability against high temperature baking and VUV irradiation. The decay time was short as 1.09 μs and the quantum yield was high to 0.77±0.02. All the characteristics indicated that MgSrAl10O17:Eu2+ would be a promising blue phosphor for PDP application.  相似文献   

11.
A new blue-emitting phosphor, Sr1−xPbxZnO2, was prepared by a novel adipic acid templated sol-gel route. Photoluminescence and crystalline properties were investigated as functions of calcination temperatures and the Pb2+ doping levels. It was found that under UV excitation with a wavelength of 283 or 317 nm, the phosphors gave emission from 374 to 615 nm with a peak centered at 451 nm. This broad-band was composed of UV and the visible range was attributed to an impurity-trapped exciton-type emission. The maximum emission intensity of the Sr1−xPbxZnO2 phosphors occurred at a Pb concentration of x=0.01. The decay time was observed to be ∼33 ms for the compound doped with 1 mol% Pb prepared at 1000 °C. Diffuse reflectance spectra revealed the characteristic absorption peaks and the bandgap energy of SrZnO2 was found to be 3.4 eV. SEM analysis indicated that phosphor particles have an irregularly rounded morphology and the average particle size was found to be approximately 1 μm.  相似文献   

12.
A phosphor Tb3+-doped ZnWO4 (ZWO:Tb) phosphors were prepared by a hydrothermal method. X-ray powder diffraction (XRD) analysis revealed that the as-obtained sample is pure ZnWO4 phase. The excitation and emission spectra indicated that the phosphor could be well excited by ultraviolet light (272 nm) and emit blue light at about 491 nm and green light at about 545 nm. Significant energy transfer from WO42− groups to Tb3+ ions has been observed. Two approaches to charge compensation are investigated: (a) 2Zn2+ = Tb3+ + M+, where M+ is a monovalent cation like Li+, Na+ and K+ acting as a charge compensator; (b) 3Zn2+ = 2Tb3+ + vacancy. Compared with two charge compensation patterns in the ZnWO4:Tb3+, it has been found that ZnWO4:Tb3+ phosphors used Li+ as charge compensation show greatly enhanced bluish-green emission under 272 nm excitation.  相似文献   

13.
Current radiation dosimetry methods involve the release of trapped charge carriers in the form of electrons-holes pairs generated by irradiation exposure of the dosimetric materials. Thermal and optical stimulations of the irradiated material freed the trapped charges that eventually recombine with interband centers producing the emission of light. The integrated intensity of the emitted light is proportional to the radiation dose exposure. In this work, we present an UV radiation dosimetry technique based on the characteristic persistence luminescence (PLUM) 4f65d1→4f7 electronic transition of Eu2+ ions in SrAl2O4:Eu2+, Dy3+. The dose assessment is carried out by measuring the PLUM signal integrated during a certain time. The PLUM performance of SrAl2O4:Eu2+, Dy3+ phosphor exhibited a linear behavior for the first 50 s of UV irradiation. For higher UV time exposure the behavior is sublinear with no apparent saturation during a 10 min period. The PLUM dosimetry response was performed at 400 nm that corresponds to the main band component of the PLUM excitation spectrum in the 250-500 nm range. The main advantage of a dosimeter device based on the PLUM of SrAl2O4:Eu2+, Dy3+ is that neither thermal nor optical stimulation is required, avoiding the need of cumbersome electronic photo/thermal stimulation equipment. Due to the highly efficient 250-500 nm PLUM response of SrAl2O4:Eu2+, Dy3+, it could have potential application as UV radiation dosimeter in the UV range of grate human health concerns caused by UV solar radiation.  相似文献   

14.
The SrS:Ce/ZnS:Mn phosphor blends with various combination viz 75:25, 50:50 and 25:75 were assign to generate the white-light emission using near-UV and blue-light emitting diodes (LED) as an excitation source. The SrS:Ce exhibits strong absorption at 427 nm and the corresponding intense emission occurs at 480 and 540 nm due to electron transition from 5d(2D)−4f(2F5/2, 7/2) of Ce3+ ion as a result of spin-orbit coupling. The ZnS:Mn excited under same wavelength shows broad emission band with λmax=582 nm originates due to 3d (4G−6S) level of Mn2+. Photoluminescence studies of phosphor blend excited using near-UV to blue light confirms the emitted radiation varies from cool to warm white light in the range 430-600 nm, applicable to LED lightings. The CIE chromaticity coordinate values measured using SrS:Ce/ZnS:Mn phosphor blend-coated 430 nm LED pumped phosphors in the ratio 75:25, 50:50 and 25:75 are found to be (0.235, 0.125), (0.280, 0.190) and (0.285, 0.250), respectively.  相似文献   

15.
A novel blue light emitting NaSr1 − xPO4:Eu2+x (x = 0.001 to 0.02) phosphors were prepared by solid-state reaction method to investigate its optical properties and thermal stability for its application in white light-emitting diodes (w-LEDs). The excitation and emission spectra of the prepared phosphor reveal a broad emission peak centered at 460 nm which arises due to 4f-5d transitions of Eu2+ upon the near ultra-violet (n-UV) excitation wavelength at 380 nm. The effect of Eu2+ doping concentration and sintering temperature on the emission intensity of NaSrPO4:Eu2+ was investigated along with its chromaticity coordinates. The temperature dependent luminescence properties of the prepared phosphor show better results than that of the commercial YAG:Ce3+phosphor. Besides, their XRD, FT-IR, SEM, TG, and DTA profiles have also been analyzed to explore its structural details.  相似文献   

16.
Polycrystalline Ca2BO3Cl:Ce3+,Eu2+ phosphors were synthesized by a solid-state reaction and which could display tunable color emission from blue to yellow under an ultraviolet (UV) source by adjusting the ratio of Ce3+ and Eu2+ appropriately. The mechanism of resonance-type energy transfer from Ce3+ to Eu2+ was established to be electric dipole-dipole natured, and the critical distance was estimated to be 31 Å based on the spectral overlap and concentration quenching model. A white light was obtained from Ca2BO3Cl:0.06Ce3+,0.01Eu2+ phosphor with chromaticity coordinates (x=0.31, y=0.29) and relative color temperature of 7330 K upon excitation with 360 nm, which is potentially a good candidate as an UV-convertible phosphor for white light-emitting diodes (LEDs).  相似文献   

17.
Blue–green emitting BaAlxOy:Eu2+,Dy3+ phosphor was synthesized by the combustion method. The influence of various parameters on the structural, photoluminescence (PL) and thermoluminescence (TL) properties of the phosphor were investigated by various techniques. Phosphor nanocrystallites with high brightness were obtained without significantly changing the crystalline structure of the host. In the PL studies, broad-band excitation and emission spectra were observed with major peaks at 340 and 505 nm, respectively. The observed afterglow is ascribed to the generation of suitable traps due to the presence of the co-doped Dy3+ ions. Though generally broad, the peak structure of the TL glow curves obtained after irradiation with UV light was non-uniform with suggesting the contribution to afterglow from multiple events at the luminescent centers. Further insight on the afterglow behavior of the phosphor was deduced from TL decay results.  相似文献   

18.
Changyu Shen  Yi Yang  Huajun Feng 《Optik》2010,121(1):29-32
The shift of the emission band to longer wavelength (yellow-orange) of the Ba2MgSi2−xAlxO7: 0.1Eu2+ phosphor under the 350-450 nm excitation range has been achieved by adding the codoping element (Mn2+) in the host. The single-host silicate phosphor for WLED, Ba2MgSi2−xAlxO7: 0.1Eu2+, 0.1Mn2+ was prepared by high-temperature solid-state reaction. It was found experimentally that, its three-color emission peaks are situated at 623, 501 and 438 nm, respectively, under excitation of 350-450 nm irradiation. The emission peaks at 438 and 501 nm originate from the transition 5d to 4f of Eu2+ ions that occupy the two Ba2+ sites in the crystal of Ba2MgSi2−x AlxO7, while the 623 nm emission is attributed to the energy transfer from Eu2+ ions to Mn2+ ions. The white light can be obtained by mixing the three emission colors of blue (438 nm), green (501 nm) and red (623 nm) in the single host. When the concentrations of the Al3+, Eu2+ and Mn2+ ions were 0.4, 0.1 and 0.1 mol, respectively, the sample presented intense white emission. The addition of Al ion to the host leads to a substantial change of intensity ratio between blue and green emissions. White light could be obtained by combining this phosphor with 405 nm light-emitting diodes. The near-ultraviolet GaN-based Ba2MgSi1.7 Al0.3O7: 0.1Eu2+, 0.1Mn2+ LED achieves good color rendering of over 85.  相似文献   

19.
A novel green-emitting nano-sized phosphor, Tb3+-doped GdCaAlO4 was synthesized with a precursor prepared by citrate sol-gel method at relatively low temperature. Powder X-ray diffraction (XRD) analysis confirmed the formation of GdCaAlO4. Field-emission scanning electron microscopy (FE-SEM) observation indicated a narrow size-distribution of about ∼100 nm for the particles with a spherical shape. Upon excitation with near UV and vacuum ultraviolet (VUV) light, the phosphor showed strong green-emission peaked at around 546 nm, corresponding to the 5D47F5 transition of Tb3+, and the highest photoluminescence (PL) intensity at 546 nm was found at a content of about 12 mol% Tb3+. As the Tb3+ concentration increases, the fast diffusion of energy among terbium ions toward traps or impurities resulting in a decrease of the lifetime. The optical properties study suggests that it is a potential candidate for plasma display panels (PDPs) application.  相似文献   

20.
Composition variation in optimized solid state reaction conditions has been done to achieve intense green emission in YTbxBO3 phosphor under UV and VUV (147 nm resonant Xe*, 172 nm Xe2* excimer band) excitation. Inert interface layer created by fabricating a shell of silica nanoparticles over individual phosphor grain protected the phosphor surface from deterioration and oxidation of luminescent ion (Tb3+) thus completely arresting phosphor degradation. At optimum Tb content of 20 mol%, integrated photoluminescence intensity of developed YTbxBO3 phosphor is four times higher than commercial green YBT. With short decay time of 4 ms, YTbxBO3 core-nano silica shell green emitting phosphor has great application potential in PDP panel and phosphor coated Xe lamps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号