首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential of ketocarotenoids to protect the photosynthetic apparatus from damage caused by excess light and UV-B radiation was assessed. Therefore, the cyanobacterium Synechococcus was transformed with a foreign beta-carotene ketolase gene under a strong promoter leading to the accumulation of canthaxanthin. This diketo carotenoid is absent in the original strain. Most of the newly formed canthaxanthin was located in the thylakoid membranes. The endogenous beta-carotene hydroxylase was unable to interact with the ketolase. Therefore, only traces of astaxanthin were found. The transformant was treated with strong light (500 or 1200 mumol m-2 s-1) and with UV-B radiation. In contrast to a nontransformed strain the overall photosynthesis, measured as oxygen evolution, was protected from inhibition by light of 500 mumol m-2 s-1 and UV-B radiation of 6.8 W m-2. Furthermore, degradation in the light of chlorophyll and carotenoids at an irradiance of 1200 mumol m-2 s-1, which was substantial in the nontransformed control, was prevented. These results indicate that in situ canthaxanthin, which is formed at the expense of zeaxanthin and replaces this hydroxy carotenoid within the photosynthetic apparatus, is a better protectant against solar radiation. These findings are discussed on the basis of the in vitro properties such as inactivating peroxyl radicals, quenching of singlet oxygen and oxidation stability of these different carotenoid structures.  相似文献   

2.
类胡萝卜素是一类奇特的色素,由高等植物和微生物光化学合成,作为防止单线氧通过光敏反应产生危害的必要基团,类胡萝卜素最近受到了关注。类胡萝卜素联于富勒烯上,既可大大增加在可见光区域光诱导电子转移的有效吸收断面,又可抑制富勒烯敏化单线氧的危害能力。合成了类胡萝卜素的相关化合物,报道的某些反应条件先进且简洁。  相似文献   

3.
Singlet oxygen, a harmful reactive oxygen species, can be quantified with the substance 2,2,6,6‐tetramethylpiperidine (TEMP) that reacts with singlet oxygen, forming a stable nitroxyl radical (TEMPO). TEMPO has earlier been quantified with electron paramagnetic resonance (EPR) spectroscopy. In this study, we designed an ultra–high‐performance liquid chromatographic—tandem mass spectrometric (UHPLC‐ESI‐MS/MS) quantification method for TEMPO and showed that the method based on multiple reaction monitoring (MRM) can be used for the measurements of singlet oxygen from both nonbiological and biological samples. Results obtained with both UHPLC‐ESI‐MS/MS and EPR methods suggest that plant thylakoid membranes produce 3.7 × 10?7 molecules of singlet oxygen per chlorophyll molecule in a second when illuminated with the photosynthetic photon flux density of 2000 μmol m?2 s?1.  相似文献   

4.
Abstract

The isocratic separation of 14 carotenoids, as well as retinol, retinyl acetate, retinyl palmitate, α-tocopherol and tocopherol acetate, is accomplished in 12 minutes, using a Spheri-5-ODS column and acetonitrile:dichloromethane:methanol (70:20:10) as mobile phase, with two-channel, programmable multiwavelength detection. The carotenoids separated are as follows: lutein/zeaxanthin, canthaxanthin, β-apo-8′ carotenal, β-cryptoxanthin, echinenone, lycopene, γ-carotene, α-carotene, β-carotene, 9-cis-β-carotene, 15-cis-/13-cis-β-carotene, phytoene and phytofluene. The separation of lutein and zeaxanthin is obtained simply by changing the mobile phase to acetonitrile:methanol (85:15).  相似文献   

5.
The relationship between the structural and functional changes of the photosynthetic apparatus in the flower bud of Lilium longiflorum during chloroplast-chromoplast transition was examined. Compared with green petals, there was a five-fold increase of the carotenoid content in yellow petals, whereas the chlorophyll content decreased five-fold. Absorption and emission fluorescence spectra of chromoplasts indicated that newly synthesized carotenoids were not associated with photosystem II (PSII) photochemistry. The maximum quantum yield in the remaining PSII reaction centers remained constant during the chromoplast formation, whereas the photosynthetic electron transport beyond PSII became inhibited, as indicated by a marked decrease of the O2 evolution capacity, of the photochemical quenching of chlorophyll-alpha fluorescence and of the operational quantum yield of photosynthetic electron transport. Deconvoluted fluorescence emission spectra indicated a more rapid degradation of photosystem I (PSI) complexes than of PSII during chromoplast formation. Compared with green petals, the spillover between PSII and PSI decreased by approximately 40% in yellow petals. Our results indicate that during chloroplast-chromoplast transition in the flower bud of L. longiflorum, PSII integrity was preserved longer than the rest of the photosynthetic apparatus.  相似文献   

6.
Action of reactive oxygen species (ROS) on the isolated D1 protein, a key component of Photosystem II (PSII) complex, was studied and compared with the effect of high irradiance on this protein in mildly solubilized photosynthetic membranes and cells of the cyanobacterium Synechocystis. Whereas singlet oxygen caused mainly protein modification reflected by shift of its electrophoretic mobility, action of hydrogen peroxide and superoxide resulted in generation of specific fragments. Hydroxyl radicals as the most ROS induced fast disappearance of the protein. The results substantiate the ability of ROS to cause direct scission of the D1 peptide bonds. Similar D1 modification, fragmentation and additionally cross-linking with other PSII subunits were observed during illumination or hydrogen peroxide treatment of mildly solubilized thylakoids. Peroxide-induced fragmentation did not occur in thylakoids of the strain lacking a ligand to the nonheme iron, confirming the role of this prosthetic group in the D1-specific cleavage. The D1 modification, fragmentation and cross-linking were suppressed by ROS scavengers, supporting the direct role of ROS in these phenomena. Identical symptoms of the ROS-induced D1 damage were detected in illuminated cells of Synechocystis mutants with a higher probability of ROS formation, documenting the relevance of the in vitro results for the situation in vivo.  相似文献   

7.
Carotenoids are essential pigments in natural photosynthesis. They absorb in the blue–green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This process is an example of singlet–singlet energy transfer and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. In this case, triplet–triplet energy transfer from (bacterio-)chlorophyll to carotenoid plays a key role in this photoprotective reaction. In the light-harvesting pigment–protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role, namely the structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined to provide a basis from which to describe the photochemistry of carotenoids, which underlies most of their important functions in photosynthesis. Then, the possibility to utilize the functions of carotenoids in artificial photosynthetic light-harvesting systems will be discussed. Some examples of the model systems are introduced.  相似文献   

8.
In plants, excess irradiation can damage the photosynthetic apparatus, although some protective mechanisms exist. The excess energy can be dissipated as thermal energy, and pigments (i.e., carotenoids) also play an important role in protecting the photosynthetic apparatus by epoxidating reactions. Chromatographic analysis of pigment extracts of Gracilaria tenuistipitata shows that zeaxanthin is the major carotenoid in this alga, accounting for up to 82% of total carotenoids. Short-term (55 h) and long-term (10 days) response of the pigments shows that Chl a, β-carotene and zeaxanthin degradation after light increase follows negative exponential trends, while the response of biliproteins is almost linear. Decreasing the irradiance results in a clear saturating response of the synthesis of Chl a and β-carotene after one to two days. Biliprotein synthesis displays a double linear trend, the first one lasting for four days in the cases of both R-phycoerythrin (RPE) and R-phycocyanin (RPC). The response of zeaxanthin is always faster than that of Chl a or biliproteins to changes of irradiance. Our results might indicate the presence of two pools of zeaxanthin in this alga, with different acclimation responses to the changes in the photon flux density.  相似文献   

9.
Light harvesting complexes (LHCs) have been identified in all photosynthetic organisms. To understand their function in light harvesting and energy dissipation, detailed knowledge about possible excitation energy transfer (EET) and electron transfer (ET) processes in these pigment proteins is of prime importance. This again requires the study of electronically excited states of the involved pigment molecules, in LHCs of chlorophylls and carotenoids. This paper represents a critical review of recent quantum chemical calculations on EET and ET processes between pigment pairs relevant for the major LHCs of green plants (LHC-II) and of purple bacteria (LH2). The theoretical methodology for a meaningful investigation of such processes is described in detail, and benefits and limitations of standard methods are discussed. The current status of excited state calculations on chlorophylls and carotenoids is outlined. It is focused on the possibility of EET and ET in the context of chlorophyll fluorescence quenching in LHC-II and carotenoid radical cation formation in LH2. In the context of non-photochemical quenching of green plants, it is shown that replacement of the carotenoid violaxanthin by zeaxanthin in its binding pocket of LHC-II can not result in efficient quenching. In LH2, our computational results give strong evidence that the S(1) states of the carotenoids are involved in carotenoid cation formation. By comparison of theoretical findings with recent experimental data, a general mechanism for carotenoid radical cation formation is suggested.  相似文献   

10.
Abstract —Our recent research on photochemiluminescence (PCL) of pigments in solutions is reviewed. PCL was observed in the course of photooxidation by oxygen of chlorophyll a , bacteriochlorophyll, protochlorophyll, their analogs, synthetic dyes and aromatic hydrocarbons. The PCL of chlorophyll was studied in detail. It depends on oxygen concentration, intensity of exciting light, pH, nature of pigments, solvents etc. The thermochemiluminescence was observed after illumination of liquid and solid pigment solutions at low temperature (down to - 170C). The excitation spectra of PCL coincide with the pigment absorption spectra. The PCL emission spectra in most cases differ from those of pigment fluorescence. Electron acceptors, electron donors, radical inhibitors and β-carotene quench PCL. The quenching efficiency of electron acceptors is similar to their action on the chlorophyll triplet state. The quenching effect of radical inhibitors and β-carotene correlates with their activity in reaction with singlet oxygen. The effect of quenchers on the chlorophyll fluorescence, photobleaching and pigment sensitized oxygenation was studied. Analysis of experimental data allowed the assumption that chemiluminescence accompanies the decomposition of labile pigment peroxides. The accumulation of peroxides is probably due to the reaction in the complex of pigment and singlet oxygen, formed as a result of energy transfer from photoexcited (triplet) pigment molecules to oxygen. The terminal chemiluminescence emission proceeds from the singlet excited states of molecules of pigments and products of their oxidation.  相似文献   

11.
This paper reports the chemical evidence of the balance between radical molecular ions and protonatedmolecules of xanthophylls (an oxygen-containing carotenoid) with a conjugated pi-system (polyene) and oxygen as a heteroatom in ESI and HRESI mass spectrometry. The ionization energy of neutral xanthophylls was calculated by semi-empirical methods. The results were compared with those previously published for carotenoids and retinoids, which have also been shown in ESI-MS to form M(+*) and [M + H](+), respectively. This study demonstrates, for the first time, the correlation of an extended conjugation and the presence of oxygen in the formation and balance of M(+*) or [M + H](+) for the carotenoids, neoxanthin, lutein, violaxanthin and zeaxanthin.  相似文献   

12.
The effect of singlet oxygen on light-harvesting (LH) complexes has been studied for a number of sulfur (S+) and nonsulfur (S) photosynthetic bacteria. The visible/near-IR absorption spectra of the standard LH2 complexes (B800-850) of Allochromatium (Alc.) vinosum (S+), Rhodobacter (Rba.) sphaeroides (S), Rhodoblastus (Rbl.) acidophilus (S), and Rhodopseudomonas (Rps.) palustris (S), two types LH2/LH3 (B800-850 and B800-830) of Thiorhodospira (T.) sibirica (S+), and an unusual LH2 complex (B800-827) of Marichromatium (Mch.) purpuratum (S+) or the LH1 complex from Rhodospirillum (Rsp.) rubrum (S) were measured in aqueous buffer suspensions in the presence of singlet oxygen generated by the illumination of the dye Rose Bengal (RB). The content of carotenoids in the samples was determined using HPLC analysis. The LH2 complex of Alc. vinosum and T. sibirica with a reduced content of carotenoids was obtained from cells grown in the presence of diphenylamine (DPA), and LH complexes were obtained from the carotenoidless mutant of Rba. sphaeroides R26.1 and Rps. rubrum G9. We found that LH2 complexes containing a complete set of carotenoids were quite resistant to the destructive action of singlet oxygen in the case of Rba. sphaeroides and Mch. purpuratum. Complexes of other bacteria were much less stable, which can be judged by a strong irreversible decrease in the bacteriochlorophyll (BChl) absorption bands (at 850 or 830 nm, respectively) for sulfur bacteria and absorption bands (at 850 and 800 nm) for nonsulfur bacteria. Simultaneously, we observe the appearance of the oxidized product 3-acetyl-chlorophyll (AcChl) absorbing near 700 nm. Moreover, a decrease in the amount of carotenoids enhanced the spectral stability to the action of singlet oxygen of the LH2 and LH3 complexes from sulfur bacteria and kept it at the same level as in the control samples for carotenoidless mutants of nonsulfur bacteria. These results are discussed in terms of the current hypothesis on the protective functions of carotenoids in bacterial photosynthesis. We suggest that the ability of carotenoids to quench singlet oxygen (well-established in vitro) is not well realized in photosynthetic bacteria. We compared the oxidation of BChl850 in LH2 complexes of sulfur bacteria under the action of singlet oxygen (in the presence of 50 μM RB) or blue light absorbed by carotenoids. These processes are very similar: {[BChl + (RB or carotenoid) + light] + O2} → AcChl. We speculate that carotenoids are capable of generating singlet oxygen when illuminated. The mechanism of this process is not yet clear.  相似文献   

13.
The function as an antioxidant seems to represent the central principle of chemopreventive activity of carotenoids against cancer initiation and promotion. The aim of this study was to clarify whether or not extrachloroplastic-accumulated secondary carotenoids (astaxanthin, canthaxanthin and echinenone) of Haematococcus lacustris [Girod] Rostafinski exhibit a similar antioxidative activity in protecting the cell of this green alga from photo-oxidative damage. In vivo experiments were performed, investigating the effect of UV radiation, artificial photosensitizers (rose bengal, toluidine blue) and copper-mediated lipid peroxidation on suspensions of flagellates which contained different amounts of secondary carotenoids. The results revealed a higher resistance of red flagellates to photo-oxidative stress. The findings are discussed with respect to the shading function of secondary carotenoids and known protective mechanisms involving quenching of reactive oxygen species and radical reactions in plant cells. A hypothesis for this functional aspect of secondary carotenoids in H. lacustris preventing injury by excessive insolation is suggested: ketocarotenoids, first accumulated in lipid vacuoles around the nucleus, might act as a physico chemical barrier, protecting particularly the genome from free radical-mediated damage.  相似文献   

14.
In this paper the application of on-line HPLC-UV-APCI (atmospheric pressure chemical ionization) mass spectrometry (MS) coupling for the separation and determination of different carotenoids as well as cis/trans isomers of beta-carotene is reported. All HPLC separations were carried out under RP conditions on self-synthesized polymeric C30 phases. The analysis of a carotenoid mixture containing astaxanthin, canthaxanthin, zeaxanthin, echinenone and beta-carotene by HPLC-APCI-MS was achieved by scanning the mass range from m/z 200 to 700. For the characterization of a sample containing cis/trans isomers of beta-carotene as well as their oxidation products, a photodiode-array UV-visible absorbance detector was used in addition between the column and the mass spectrometer for structural elucidation of the geometrical isomers. The detection limit for beta-carotene in positive-ion APCI-MS was determined to be 1 pmol. In addition, an extract of non-polar substances in vegetable juice has been analyzed by HPLC-APCI-MS. The included carotenoids could be identified by their masses and their retention times.  相似文献   

15.
Measurements of pigment triplet-triplet absorption, pigment phosphorescence and photosensitized singlet oxygen luminescence were carried out on solutions containing monomeric bacteriochlorophylls (Bchl) c and d, isolated from green photosynthetic bacteria, and their magnesium-free and farnesyl-free analogs. The energies of the pigment triplet states fell in the range 1.29-1.34 eV. The triplet lifetimes in aerobic solutions were 200-250 ns; they increased to 280 +/- 70 microseconds after nitrogen purging in liquid solutions and to 0.7-2.1 ms in a solid matrix at ambient or liquid nitrogen temperatures. Rate constants for quenching of the pigment triplet state by oxygen were (2.0-2.5) x 10(9) M-1 s-1, which is close to 1/9 of the rate constant for diffusion-controlled reactions. This quenching was accompanied by singlet oxygen formation. The quantum yields for the triplet state formation and singlet oxygen production were 55-75% in air-saturated solutions. Singlet oxygen quenching by ground-state pigment molecules was observed. Quenching was the most efficient for magnesium-containing pigments, kq = (0.31-1.2) x 10(9) M-1 s-1. It is caused mainly by a physical process of singlet oxygen (1O2) deactivation. Thus, Bchl c and d and their derivatives, as well as chlorophyll and Bchl a, combine a high efficiency of singlet oxygen production with the ability to protect photochemical and photobiological systems against damage by singlet oxygen.  相似文献   

16.
紫外可见分光光度法对湖泊沉积物中的色素测定   总被引:4,自引:0,他引:4  
介绍了如何从湖泊沉积物中提取出叶绿素、胡萝卜素、颤藻黄素和蓝藻叶黄素等几种色素的方法以及用外可分光光度法对其进行测定;同时介绍了沉积物中几种色素含理的计算方法。最后对云南滇池沉积物中色素含量进行了分析测试,并说明色素分析在沉物研究方面的意义。  相似文献   

17.
Abstract— The order of inhibition of the photooxidation of chlorophyll a in ethanol and ethanol-benzene is as follows: β-carotene, α-tocopherol, benzoquinone, DABCO, menadione, cholesterol and KI. The quenching of singlet oxygen by β-carotene occurs by a collisional quenching mechanism with a diffusion-controlled rate of 1.7 × 1010 M -1 s-1. Photodecomposition of Chi a is faster in ethanol-D2O than in ethanol-H2O. Photoirradiation (660 nm) of the peridinin-Chl a -protein complex, a photosynthetic light-harvesting pigment isolated from marine dinoflagellates, did not show any photo-decomposition of its Chi a in H2O or D2O, even after an extended period (12 h) of irradiation. However, the carotenoid, peridinin, in the photosynthetic antenna pigment was photobleached (ca. 10%) during the irradiation. We conclude that the singlet oxygen formed as a result of the Chi photosensitization is immediately quenched by the low-lying triplet state of four peridinin molecules (per Chl a ) bound within the same protein crevice. The carotenoid thus effectively protects Chl a from photodynamic damage, providing a direct proof for the protective role of carotenoids in the photosynthetic pigment complex.  相似文献   

18.
This study reports comparison of two techniques measuring photosynthesis in the ubiquitous diatom Skeletonema costatum, i.e., the classical oximetry and the recent modulated fluorimetry. Microalgae in semi-continuous cultures were exposed to five different environmental conditions simulating a seasonal effect with co-varying temperature, photoperiod and incident light. Photosynthesis was assessed by gross rate of oxygen evolution (P(B)) and the electron transport rate (ETR) measurements. The two techniques were linearly related within seasonal treatments along the course of the P/E curves. The light saturation intensity parameters (Ek and Ek(ETR)), and the maximum electron transport rate increased significantly with the progression of the season while the maximum light utilization efficiency for ETR (alpha(ETR)) was constant. By contrast, the maximum gross oxygen photosynthetic capacity (Pmax(B)) and the maximum light utilization efficiency for P(B) (alpha(B)) increased from December to May treatment but decreased from May to July treatment. Both techniques showed clear photoacclimation in microalgae with the progression of the season, as illustrated by changes in photosynthetic parameters. The relationship between the two techniques changed when high temperature, photoperiod and incident light were combined, possibly due to an overestimation of the PAR--averaged chlorophyll-specific absorption cross-section. Despite this change, our results illustrate the strong suitability of in vivo chlorophyll fluorimetry to estimate primary production in the field.  相似文献   

19.
Diets supplemented with astaxanthin and canthaxanthin, respectively, and a control diet without carotenoid additions, were fed to 1½-year-old Atlantic salmon (Salmo salar, L.) for one year. The integuments were investigated as to their quantitative and qualitative carotenoid composition. Astaxanthin and canthaxanthin deposited in the skin amounted to 20 and 14% of the total carotenoids only. Seventy % must be considered as metabolites of astaxanthin and canthaxanthin and 10% as basic xanthophylls also present in the control groups. Astaxanthin apparently underwent the following metabolic pathway: astaxanthin→idoxanthin→adonixanthin→zeaxanthin→zeaxanthin 5,6-epoxides. Reduction of the 4′-carbonyl group was stereospecific leading to the (4′R)-idoxanthin. Canthaxanthin was obviously converted to β,β-carotene via 4′-hydroxyechinenone, echinenone, and 4-hydroxy-β,β-carotene.  相似文献   

20.
A series of stable free-base, Zn(II) and Pd(II) bacteriochlorins containing a fused six- or five-member diketo- or imide ring have been synthesized as good candidates for photodynamic therapy sensitizers, and their electrochemical, photophysical, and photochemical properties were examined. Photoexcitation of the palladium bacteriochlorin affords the triplet excited state without fluorescence emission, resulting in formation of singlet oxygen with a high quantum yield due to the heavy atom effect of palladium. Electrochemical studies revealed that the zinc bacteriochlorin has the smallest HOMO-LUMO gap of the investigated compounds, and this value is significantly lower than the triplet excited-state energy of the compound in benzonitrile. Such a small HOMO-LUMO gap of the zinc bacteriochlorin enables intermolecular photoinduced electron transfer from the triplet excited state to the ground state to produce both the radical cation and the radical anion. The radical anion thus produced can transfer an electron to molecular oxygen to produce superoxide anion which was detected by electron spin resonance. The same photosensitizer can also act as an efficient singlet oxygen generator. Thus, the same zinc bacteriochlorin can function as a sensitizer with a dual role in that it produces both singlet oxygen and superoxide anion in an aprotic solvent (benzonitrile).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号