首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently developed self-assembly strategies allow to rationally reduce the symmetry of metallosupramolecular architectures. In addition, the combination of multiple ligand types without creating compound mixtures has become possible. Among several approaches to realize non-statistical heteroleptic assembly, Coordination Sphere Engineering (CSE) makes use of secondary repulsive or attractive interactions in direct vicinity of the metal nodes. Previously, we used steric congestion to turn dinuclear [Pd2L4] cages with fourfold symmetry into [Pd2L3X2] (X = solvent, halide) bowl structures. Here, we introduce a new subtype of this strategy based on balancing hydrogen bonding and repulsive interactions between ligands carrying quinoline (LQu) and 1,8-naphthyridine (LNa) donors to generate trans-[Pd2L2] and [Pd2L3L′] cages, assisted by templation of encapsulated fullerenes. Combined with steric congestion caused by acridine (LAc) donors, we further report the first example of a heteroleptic [Pd2L2L′X2] bowl. Formation, structure and fullerene binding ability of these metallo-supramolecular hosts were studied by NMR, mass spectrometry and single crystal X-ray diffraction.

Coordination Sphere Engineering (CSE) allows non-statistical assembly of heteroleptic supramolecular architectures by fine adjustment of steric and electronic features around square-planar Pd(ii) cations with naphthyridine donors.  相似文献   

2.
The preparation of functionalized, heteroleptic PdxL2x coordination cages is desirable for catalytic and optoelectronic applications. Current rational design of these cages uses the angle between metal-binding (∠B) sites of the di(pyridyl)arene linker to predict the topology of homoleptic cages obtained via non-covalent chemistry. However, this model neglects the contributions of steric bulk between the pyridyl residues—a prerequisite for endohedrally functionalized cages, and fails to rationalize heteroleptic cages. We describe a classical mechanics (CM) approach to predict the topological outcomes of PdxL2x coordination cage formation with arbitrary linker combinations, accounting for the electronic effects of coordination and steric effects of linker structure. Initial validation of our CM method with reported homoleptic Pd12LFu24 (LFu = 2,5-bis(pyridyl)furan) assembly suggested the formation of a minor topology Pd15LFu30, identified experimentally by mass spectrometry. Application to heteroleptic cage systems employing mixtures of LFu (∠B = 127°) and its thiophene congener LTh (∠B = 149° ∠Bexp = 152.4°) enabled prediction of Pd12L24 and Pd24L48 coordination cages formation, reliably emulating experimental data. Finally, the topological outcome for exohedrally (LEx) and endohedrally (LEn) functionalized heteroleptic PdxL2x coordination cages were predicted to assess the effect of steric bulk on both topological outcomes and coordination cage yields, with comparisons drawn to experimental data.

A molecular mechanics approach enables the accurate prediction of polyhedral topology for homoleptic and heteroleptic palladium MxL2x coordination cages, allowing for new insight and design when considering endo- and exo-hedral functionalization.  相似文献   

3.
Control over the integrative self-sorting of metallo-supramolecular assemblies opens up possibilities for introducing increased complexity and function into a single self-assembled architecture. Herein, the relationship between the geometry of three ligand components and morphology of three self-sorted heteroleptic [Pd2 L 2 L ′2]4+ cages is examined. Pd-mediated assembly of two bis-monodentate pyridyl ligands with native bite angles of 75° and 120° affords a cis-[Pd2 L 2 L ′2]4+ cage while the same reaction with two ligands with bite angles of 75° and 60° gives an unprecedented, self-penetrating structural motif; a trans-[Pd2(anti- L )2 L ′2]4+ heteroleptic cage with a “doubly bridged figure eight” topology. Each heteroleptic assembly can be formed by cage-to-cage conversion of the homoleptic precursors and morphological control of [Pd2 L 2 L ′2] cages is achieved by selective ligand displacement transformations in a system of three ligands and at least six possible cage products.  相似文献   

4.
Introduction of atropisomeric axes into a bent bispyridine ligand leads to the quantitative formation of a complex mixture of atropisomeric M2L4 cages upon treatment with metal ions. Whereas the isomer ratio of the obtained cage mixture, consisting of up to 42 isomers, is insensitive to temperature and solvent, the quantitative convergence from the mixture to a single isomer is accomplished upon encapsulation of a large spherical guest, namely fullerene C60. The observed isomerization with other guests depends largely on their size and shape (e.g., <10 and 82% convergence with planar triphenylene and bowl-shaped corannulene guests, respectively). Besides the unusual guest-induced convergence, the present cage mixture displays the strongest guest emission (ΦF = 68%) among previously reported MnLm cages and capsules, upon encapsulation of a BODIPY dye in water.

A complex mixture of atropisomeric M2L4 cages is shown to undergo perfect convergence to a single isomer upon encapsulation of spherical C60 in water. Moreover, the cage mixture displays very strong guest emission upon encapsulation of a BODIPY dye.  相似文献   

5.
Although many impressive metallo-supramolecular architectures have been reported, they tend towards high symmetry structures and avoid extraneous functionality to ensure high fidelity in the self-assembly process. This minimalist approach, however, limits the range of accessible structures and thus their potential applications. Herein is described the synthesis of a family of ditopic ligands wherein the ligand scaffolds are both low symmetry and incorporate exohedral functional moieties. Key to this design is the use of CuI-catalysed azide-alkyne cycloaddition (CuAAC) chemistry, as the triazole is capable of acting as both a coordinating heterocycle and a tether between the ligand framework and functional unit simultaneously. A common precursor was used to generate ligands with various functionalities, allowing control of electronic properties whilst maintaining the core structure of the resultant cis-Pd2L4 nanocage assemblies. The isostructural nature of the scaffold frameworks enabled formation of combinatorial libraries from the self-assembly of ligand mixtures, generating a statistical mixture of multi-functional, low symmetry architectures.  相似文献   

6.
Tris–chelate metal complexes of unsymmetrical bidentate ligands can form two geometric stereoisomers, facial (fac) and meridional (mer) isomers. Due to the small difference in their properties, the highly-selective synthesis of one of the isomers is challenging. We now designed a series of tripodal ligands with a tris(3-(2-(methyleneoxy)ethoxy)phenyl)methane pivot. Surprisingly, the ratio of the fac/mer isomers of the triply helical FeII complexes significantly changed depending on the solvents. To the best of our knowledge, this is the first example of fac/mer isomerism of a labile tris(2,2′-bipyridine) FeII complex governed by the solvent. Furthermore, well-defined self-assemblies were quantitatively produced by imine bond formation with a suitable diamine. The supramolecular assemblies contained only the fac isomer even though a mixture of the two isomers existed in solution before the condensation reaction. Namely, the self-assembly formation effectively adjusted the geometries of the building unit that results in the suitable supramolecular structure.

The novel tripodal complexes isomerize in response to environmental change, and well-defined self-assemblies were quantitatively produced by imine bond formation.  相似文献   

7.
8.
A three-dimensional FeII4L6 parallelogram was prepared from ferrocene-containing ditopic ligands. The steric preference of the bulky ferrocene cores towards meridional vertex coordination brought about this new structure type, in which the ferrocene units adopt three distinct conformations. The structure possesses two distinct, bowl-like cavities that host anionic guests. Oxidation of the ferrocene FeII to ferrocenium FeIII causes rotation of the ferrocene hinges, converting the structure to an FeII1L1+ species with release of anionic guests, even though the average charge per iron increases in a way that would ordinarily increase guest binding strength. The degrees of freedom exhibited by these new structures – derived from the different configurations of the three ligands surrounding a meridional FeII center and the rotation of ferrocene cores – thus underpin their ability to reconfigure and eject guests upon oxidation.

An oxidation-triggered twist in its ferrocene ligands causes an Fe4L6 parallelogram to release its guests and collapse into a high spin Fe1L1 structure.  相似文献   

9.
A new biaryl phosphine-containing ligand from an active palladium catalyst for ppm level Suzuki–Miyaura couplings, enabled by an aqueous micellar reaction medium. A wide array of functionalized substrates including aryl/heteroaryl bromides are amenable, as are, notably, chlorides. The catalytic system is both general and highly effective at low palladium loadings (1000–2500 ppm or 0.10–0.25 mol%). Density functional theory calculations suggest that greater steric congestion in N2Phos induces increased steric crowding around the Pd center, helping to destabilize the 2 : 1 ligand–Pd(0) complex more for N2Phos than for EvanPhos (and less bulky ligands), and thereby favoring formation of the 1 : 1 ligand–Pdo complex that is more reactive in oxidative addition to aryl chlorides.

A new, biaryl phosphine-containing ligand, N2Phos, forms a 1 : 1 complex with Pd resulting in an active catalyst at the ppm level for Suzuki–Miyaura couplings in water, enabled by an aqueous micellar medium. Notably, aryl chlorides are shown to be amenable substrates.  相似文献   

10.
For metal-mediated host compounds, the development of strategies to reduce symmetry and introduce multiple functionalities in a non-statistical way is a challenging task. We show that the introduction of steric stress around the coordination environment of square-planar PdII cations and bis-monodentate nitrogen donor ligands allows to control the size and shape of the assembled product, from [Pd2L4] cages over [Pd2L3] bowl-shaped structures to [Pd2L2] rings. Therefore, banana-shaped ligand backbones were equipped with pyridines, two different quinoline isomers and acridine, the latter three introducing steric congestion through hydrogen substituents on annelated benzene rings. Differing behavior of the four resulting hosts towards the binding of C60 and C70 fullerenes was studied and related to structural differences by NMR spectroscopy, mass spectrometry and single crystal X-ray diffraction. The three cages based on pyridine, 6-quinoline or 3-quinoline donors were found to either bind C60, C70 or no fullerene at all.  相似文献   

11.
Spherical assemblies of the type [PdnL2n]2n+ can be obtained from PdII salts and curved N-donor ligands, L. It is well established that the bent angle, α, of the ligand is a decisive factor in the self-assembly process, with larger angles leading to complexes with a higher nuclearity, n. Herein, we report heteroleptic coordination cages of the type [PdnLnL′n]2n+, for which a similar correlation between the ligand bent angle and the nuclearity is observed. Tetranuclear cages were obtained by combining [Pd(CH3CN)4](BF4)2 with 1,3-di(pyridin-3-yl)benzene and ligands featuring a bent angle of α=120°. The use of a dipyridyl ligand with α=149° led to the formation of a hexanuclear complex with a trigonal prismatic geometry; for linear ligands, octanuclear assemblies of the type [Pd8L8L′8]16+ were obtained. The predictable formation of heteroleptic PdII cages from 1,3-di(pyridin-3-yl)benzene and different dipyridyl ligands is evidence that there are entire classes of heteroleptic cage structures that are privileged from a thermodynamic point of view.  相似文献   

12.
A BODIPY‐based bis(3‐pyridyl) ligand undergoes self‐assembly upon coordination to tetravalent palladium(II) cations to form a Pd6L12 metallosupramolecular assembly with an unprecedented structural motif that resembles a rotaxane‐like cage‐in‐ring arrangement. In this assembly the ligand adopts two different conformations—a C‐shaped one to form a Pd2L4 cage which is located in the center of a Pd4L8 ring consisting of ligands in a W‐shaped conformation. This assembly is not mechanically interlocked in the sense of catenation but it is stabilized only by attractive π‐stacking between the peripheral BODIPY chromophores and the ligands’ skeleton as well as attractive van der Waals interactions between the long alkoxy chains. As a result, the co‐arrangement of the two components leads to a very efficient space filling. The overall structure can be described as a rotaxane‐like assembly with a metallosupramolecular cage forming the axle in a metallosupramolecular ring. This unique structural motif could be characterized via ESI mass spectrometry, NMR spectroscopy, and X‐ray crystallography.  相似文献   

13.
Progress in metallo-supramolecular chemistry creates potential to synthesize functional nano systems and intelligent materials of increasing complexity. In the past four decades, metal-mediated self-assembly has produced a wide range of structural motifs such as helicates, grids, links, knots, spheres and cages, with particularly the latter ones catching growing attention, owing to their nano-scale cavities. Assemblies serving as hosts allow application as selective receptors, confined reaction environments and more. Recently, the field has made big steps forward by implementing dedicated functionality, e.g. catalytic centres or photoswitches to allow stimuli control. Besides incorporation in homoleptic systems, composed of one type of ligand, desire arose to include more than one function within the same assembly. Inspiration comes from natural enzymes that congregate, for example, a substrate recognition site, an allosteric regulator element and a reaction centre. Combining several functionalities without creating statistical mixtures, however, requires a toolbox of sophisticated assembly strategies. This review showcases the implementation of function into self-assembled cages and devises strategies to selectively form heteroleptic structures. We discuss first examples resulting from a combination of both principles, namely multicomponent multifunctional host–guest complexes, and their potential in application in areas such as sensing, catalysis, and photo-redox systems.

This review highlights recent strategies towards the rational synthesis of metallo-supramolecular multicomponent systems, the implementation of functionality and the challenge to create multifunctional assemblies in non-statistical fashion.  相似文献   

14.
Chiral nanosized confinements play a major role for enantioselective recognition and reaction control in biological systems. Supramolecular self‐assembly gives access to artificial mimics with tunable sizes and properties. Herein, a new family of [Pd2L4] coordination cages based on a chiral [6]helicene backbone is introduced. A racemic mixture of the bis‐monodentate pyridyl ligand L1 selectively assembles with PdII cations under chiral self‐discrimination to an achiral meso cage, cis‐[Pd2 L1P 2 L1M 2]. Enantiopure L1 forms homochiral cages [Pd2 L1P/M 4]. A longer derivative L2 forms chiral cages [Pd2 L2P/M 4] with larger cavities, which bind optical isomers of chiral guests with different affinities. Owing to its distinct chiroptical properties, this cage can distinguish non‐chiral guests of different lengths, as they were found to squeeze or elongate the cavity under modulation of the helical pitch of the helicenes. The CD spectroscopic results were supported by ion mobility mass spectrometry.  相似文献   

15.
Long-range chirality recognition between the two chiral guest ligands can be tuned based on the helix distances (dLn–Ln = 11.5 and 14.0 Å) of bis-diketonate bridged dinuclear lanthanide complexes (2Th and 3Th, respectively) used as mediators. Both 2Th and 3Th form one-dimensional (1D) helical structures upon terminal binding of two chiral guest co-ligands (LR or LS). Long-range chiral self-recognition is achieved in self-assembly of 2Th with LR and LS to preferentially form homochiral assemblies, 2Th-LR·LR and 2Th-LS·LS, whereas there is no direct molecular interaction between the two guest ligands at the terminal edges. X-ray crystal structure analysis and density functional theory studies reveal that long-range chiral recognition is achieved by terminal ligand-to-ligand interactions between the bis-diketonate ligands and chiral guest co-ligands. Conversely, in self-assembly of 3Th with a longer helix length, statistical binding of LR and LS occurs, forming heterochiral (3Th-LR·LS) and homochiral (3Th-LR·LR and 3Th-LS·LS) assemblies in an almost 1 : 1 ratio. When phenyl side arms of the chiral guest co-ligands are replaced by isopropyl groups (L′R and L′S), chiral self-recognition is also achieved in the self-assembly process of 3Th with the longer helix length to generate homochiral (3Th-L′R·L′R and 3Th-L′S·L′S) assemblies as the favored products. Thus, subtle modification of the chiral guests is capable of achieving over 1.4 nm-range chirality recognition.

Long-range chirality recognition between the two chiral guest ligands can be tuned based on the helix distances (dLn–Ln = 11.5 and 14.0 Å) of bis-diketonate bridged dinuclear lanthanide complexes (2Th and 3Th, respectively).  相似文献   

16.
Steric bulk has been recognized as a central design principle for supporting ligands in the widely utilized Buchwald–Hartwig amination. In a recent example, it was shown that a Pd-catalyst carrying a phosphine ligand can successfully aminate aryl halides using ammonia as the nitrogen source. Interestingly, the chemoselectivity of this reaction was found to depend on the steric demand of the phosphine ligand. Whereas a sterically less demanding phosphine affords diphenylamine as the major product, it was shown that the amination reaction can be stopped after the first amination to give aniline if a sterically more encumbering phosphine ligand is used. Density functional theory calculations were carried out to examine the relationship between the steric demand of the phosphine ligand and the chemoselectivity. It was found that the key feature that leads to the chemoselectivity is the ability of the phosphine ligand to rotate the biaryl moiety of the ligand away from the Pd-center upon amine addition to release some of the steric crowding from the Pd-coordination site.

Steric bulk has been recognized as a central design principle for ligands in the widely utilized Buchwald–Hartwig amination. This mechanistic study reveals how this steric effect manipulates the reaction pathway and determines the chemoselectivity.  相似文献   

17.
This work demonstrates a new nonconventional ligand design, imidazole/pyridine‐based nonsymmetrical ditopic ligands ( 1 and 1 S ), to construct a dynamic open coordination cage from nonsymmetrical building blocks. Upon complex formation with Pd2+ at a 1:4 molar ratio, 1 and 1 S initially form mononuclear PdL4 complexes (Pd2+( 1 )4 and Pd2+( 1 S )4) without formation of a cage. The PdL4 complexes undergo a stoichiometrically controlled structural transition to Pd2L4 open cages ((Pd2+)2( 1 )4 and (Pd2+)2( 1 S )4) capable of anion binding, leading to turn‐on anion binding. The structural transitions between the Pd2L4 open cage and the PdL4 complex are reversible. Thus, stoichiometric addition (2 equiv) of free 1 S to the (Pd2+)2( 1 S )4 open cage holding a guest anion ((Pd2+)2( 1 S )4?G?) enables the structural transition to the Pd2+( 1 S )4 complex, which does not have a cage and thus causes the release of the guest anion (Pd2+( 1 S )4+G?).  相似文献   

18.
Following an ongoing interest in the study of transition metal complexes with exotic bonding networks, we report herein the synthesis of a family of heterobimetallic triangular clusters involving Ru and Pd atoms. These are the first examples of trinuclear complexes combining these nuclei. Structural and bonding analyses revealed both analogies and unexpected differences for these [Pd2Ru]+ complexes compared to their parent [Pd3]+ peers. Noticeably, participation of the Ru atom in the π-aromaticity of the coordinated benzene ring makes the synthesized compound the second reported example of ‘bottled’ double aromaticity. This can also be referred to as spiroaromaticity due to the participation of Ru in two aromatic systems at a time. Moreover, the [Pd2Ru]+ kernel exhibits unprecedented orbital overlap of Ru dz2 AO and two Pd dxy or dx2y2 AOs. The present findings reveal the possibility of synthesizing stable clusters with delocalized metal–metal bonding from the combination of non-adjacent elements of the periodic table which has not been reported previously.

Synthesis of a triangular [Pd2Ru]+ complex with delocalized metal–metal bonding between non-adjacent elements of the periodic table, double aromaticity and overlap of d-AOs with different angular momentum.  相似文献   

19.
A strategy to engineer the stacking of diketopyrrolopyrrole (DPP) dyes based on non-statistical metallosupramolecular self-assembly is introduced. For this, the DPP backbone is equipped with nitrogen-based donors that allow for different discrete assemblies to be formed upon the addition of Pd(II), distinguished by the number of π-stacked chromophores. A Pd3L6 three-ring, a heteroleptic Pd2L2L′2 ravel composed of two crossing DPPs (flanked by two carbazoles), and two unprecedented self-penetrated motifs (a Pd2L3 triple and a Pd2L4 quadruple stack), were obtained and systematically investigated. With increasing counts of stacked chromophores, UV/Vis absorptions red-shift and emission intensities decrease, except for compound Pd2L2L′2, which stands out with an exceptional photoluminescence quantum yield of 51 %. This is extraordinary for open-shell metal containing assemblies and explainable by an intra-assembly FRET process. The modular design and synthesis of soluble multi-chromophore building blocks offers the potential for the preparation of nanodevices and materials with applications in sensing, photo-redox catalysis and optics.  相似文献   

20.
Three unsymmetrical diiodobichalcogenophenes SSeI2, STeI2, and SeTeI2 and a diiodoterchalcogenophene SSeTeI2 were prepared. Grignard metathesis of SSeI2, STeI2, SeTeI2, and SSeTeI2 occurred regioselectively at the lighter chalcogenophene site because of its relatively lower electron density and less steric bulk. Nickel-catalyzed Kumada catalyst-transfer polycondensation of these Mg species provided a new class of side-chain regioregular and main-chain AB-type alternating poly(bichalcogenophene)s—PSSe, PSTe, and PSeTe—through a chain-growth mechanism. The ring-walking of the Ni catalyst from the lighter to the heavier chalcogenophene facilitated subsequent oxidative addition, thereby suppressing the possibility of chain-transfer or chain-termination. More significantly, the Ni catalyst could walk over the distance of three rings (ca. 1 nm)—from a thiophene unit via a selenophene unit to a tellurophene unit—to form PSSeTe, the first ABC-type regioregular and periodic poly(terchalcogenophene) comprising three different types of 3-hexylchalcogenophenes.

Three unsymmetrical diiodobichalcogenophenes SSeI2, STeI2, and SeTeI2 and a diiodoterchalcogenophene SSeTeI2 were prepared to synthesize a new class of polychalcogenophenes with precisely controlled sequences by catalyst-transfer polycondensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号