首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This study describes the development of a new blind hierarchical docking method, bhDock, its implementation, and accuracy assessment. The bhDock method uses two‐step algorithm. First, a comprehensive set of low‐resolution binding sites is determined by analyzing entire protein surface and ranked by a simple score function. Second, ligand position is determined via a molecular dynamics‐based method of global optimization starting from a small set of high ranked low‐resolution binding sites. The refinement of the ligand binding pose starts from uniformly distributed multiple initial ligand orientations and uses simulated annealing molecular dynamics coupled with guided force‐field deformation of protein–ligand interactions to find the global minimum. Assessment of the bhDock method on the set of 37 protein–ligand complexes has shown the success rate of predictions of 78%, which is better than the rate reported for the most cited docking methods, such as AutoDock, DOCK, GOLD, and FlexX, on the same set of complexes. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

2.
Structure‐based virtual screening usually involves docking of a library of chemical compounds onto the functional pocket of the target receptor so as to discover novel classes of ligands. However, the overall success rate remains low and screening a large library is computationally intensive. An alternative to this “ab initio” approach is virtual screening by binding homology search. In this approach, potential ligands are predicted based on similar interaction pairs (similarity in receptors and ligands). SPOT‐Ligand is an approach that integrates ligand similarity by Tanimoto coefficient and receptor similarity by protein structure alignment program SPalign. The method was found to yield a consistent performance in DUD and DUD‐E docking benchmarks even if model structures were employed. It improves over docking methods (DOCK6 and AUTODOCK Vina) and has a performance comparable to or better than other binding‐homology methods (FINDsite and PoLi) with higher computational efficiency. The server is available at http://sparks-lab.org . © 2016 Wiley Periodicals, Inc.  相似文献   

3.
We present a new approach to automatically define a quasi-optimal minimal set of pharmacophoric points mapping the interaction properties of a user-defined ligand binding site. The method is based on a fitting algorithm where a grid of sampled interaction energies of the target protein with small chemical fragments in the binding site is approximated by a linear expansion of Gaussian functions. A heuristic approximation selects from this expansion the smallest possible set of Gaussians required to describe the interaction properties of the binding site within a prespecified accuracy. We have evaluated the performance of the approach by comparing the computed Gaussians with the positions of aromatic sites found in experimental protein-ligand complexes. For a set of 53 complexes, good correspondence is found in general. At a 95% significance level, approximately 65% of the predicted interaction points have an aromatic binding site within 1.5 A. We then studied the utility of these points in docking using the program DOCK. Short docking times, with an average of approximately 0.18 s per conformer, are obtained, while retaining, both for rigid and flexible docking, the ability to sample native-like binding modes for the ligand. An average 4-5-fold speed-up in docking times and a similar success rate is estimated with respect to the standard DOCK protocol.  相似文献   

4.
We report on the development and validation of a new version of DOCK. The algorithm has been rewritten in a modular format, which allows for easy implementation of new scoring functions, sampling methods and analysis tools. We validated the sampling algorithm with a test set of 114 protein-ligand complexes. Using an optimized parameter set, we are able to reproduce the crystal ligand pose to within 2 A of the crystal structure for 79% of the test cases using our rigid ligand docking algorithm with an average run time of 1 min per complex and for 72% of the test cases using our flexible ligand docking algorithm with an average run time of 5 min per complex. Finally, we perform an analysis of the docking failures in the test set and determine that the sampling algorithm is generally sufficient for the binding pose prediction problem for up to 7 rotatable bonds; i.e. 99% of the rigid ligand docking cases and 95% of the flexible ligand docking cases are sampled successfully. We point out that success rates could be improved through more advanced modeling of the receptor prior to docking and through improvement of the force field parameters, particularly for structures containing metal-based cofactors.  相似文献   

5.
Summary An approach for docking covalently bound ligands in protein enzymes or receptors was implemented in MacDOCK, a similarity-driven docking program based on DOCK 4.0. This approach was tested with a small number of covalent ligand–protein structures, using both native and non-native protein structures. In all cases, MacDOCK was able to generate orientations consistent with the known covalent binding mode of these complexes, with a performance similar to that of other docking programs. This method was also applied to search for known covalent thrombin inhibitors in a medium-sized molecular database (ca. 11,000 compounds). Detection of functional groups suitable for covalent docking was carried out automatically. A significant enrichment in known active molecules in the first 5% of the database was obtained, showing that MacDOCK can be used efficiently for the virtual screening of covalently bound ligands.  相似文献   

6.
The fast Fourier transform (FFT) sampling algorithm has been used with success in application to protein‐protein docking and for protein mapping, the latter docking a variety of small organic molecules for the identification of binding hot spots on the target protein. Here we explore the local rather than global usage of the FFT sampling approach in docking applications. If the global FFT based search yields a near‐native cluster of docked structures for a protein complex, then focused resampling of the cluster generally leads to a substantial increase in the number of conformations close to the native structure. In protein mapping, focused resampling of the selected hot spot regions generally reveals further hot spots that, while not as strong as the primary hot spots, also contribute to ligand binding. The detection of additional ligand binding regions is shown by the improved overlap between hot spots and bound ligands. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
A novel and robust automated docking method that predicts the bound conformations of flexible ligands to macromolecular targets has been developed and tested, in combination with a new scoring function that estimates the free energy change upon binding. Interestingly, this method applies a Lamarckian model of genetics, in which environmental adaptations of an individual's phenotype are reverse transcribed into its genotype and become heritable traits (sic). We consider three search methods, Monte Carlo simulated annealing, a traditional genetic algorithm, and the Lamarckian genetic algorithm, and compare their performance in dockings of seven protein–ligand test systems having known three-dimensional structure. We show that both the traditional and Lamarckian genetic algorithms can handle ligands with more degrees of freedom than the simulated annealing method used in earlier versions of AUTO DOCK , and that the Lamarckian genetic algorithm is the most efficient, reliable, and successful of the three. The empirical free energy function was calibrated using a set of 30 structurally known protein–ligand complexes with experimentally determined binding constants. Linear regression analysis of the observed binding constants in terms of a wide variety of structure-derived molecular properties was performed. The final model had a residual standard error of 9.11 kJ mol−1 (2.177 kcal mol−1) and was chosen as the new energy function. The new search methods and empirical free energy function are available in AUTO DOCK , version 3.0. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1639–1662, 1998  相似文献   

8.
The DOCK program explores possible orientations of a molecule within a macromolecular active site by superimposing atoms onto precomputed site points. Here we compare a number of different search methods, including an exhaustive matching algorithm based on a single docking graph. We evaluate the performance of each method by screening a small database of molecules to a variety of macromolecular targets. By varying the amount of sampling, we can monitor the time convergence of scores and rankings. We not only show that the site point–directed search is tenfold faster than a random search, but that the single graph matching algorithm boosts the speed of database screening up to 60-fold. The new algorithm, in fact, outperforms the bipartite graph matching algorithm currently used in DOCK. The results indicate that a critical issue for rapid database screening is the extent to which a search method biases run time toward the highest-ranking molecules. The single docking graph matching algorithm will be incorporated into DOCK version 4.0. © 1997 John Wiley & Sons, Inc. J Comput Chem 18: 1175–1189  相似文献   

9.
The accurate prediction of protein–ligand binding is of great importance for rational drug design. We present herein a novel docking algorithm called as FIPSDock, which implements a variant of the Fully Informed Particle Swarm (FIPS) optimization method and adopts the newly developed energy function of AutoDock 4.20 suite for solving flexible protein–ligand docking problems. The search ability and docking accuracy of FIPSDock were first evaluated by multiple cognate docking experiments. In a benchmarking test for 77 protein/ligand complex structures derived from GOLD benchmark set, FIPSDock has obtained a successful predicting rate of 93.5% and outperformed a few docking programs including particle swarm optimization (PSO)@AutoDock, SODOCK, AutoDock, DOCK, Glide, GOLD, FlexX, Surflex, and MolDock. More importantly, FIPSDock was evaluated against PSO@AutoDock, SODOCK, and AutoDock 4.20 suite by cross‐docking experiments of 74 protein–ligand complexes among eight protein targets (CDK2, ESR1, F2, MAPK14, MMP8, MMP13, PDE4B, and PDE5A) derived from Sutherland‐crossdock‐set. Remarkably, FIPSDock is superior to PSO@AutoDock, SODOCK, and AutoDock in seven out of eight cross‐docking experiments. The results reveal that FIPS algorithm might be more suitable than the conventional genetic algorithm‐based algorithms in dealing with highly flexible docking problems. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
DREAM++: Flexible docking program for virtual combinatorial libraries   总被引:2,自引:0,他引:2  
We present a set of programs, DREAM++ (Docking and Reaction programs using Efficient seArch Methods written in C++), for docking computationally generated ligands into macromolecular binding sites. DREAM++ is composed of three programs: ORIENT++, REACT++ and SEARCH++. The program ORIENT++ positions molecules in a binding site with the DOCK algorithm [1, 2]. Its output can be used as input to REACT++ and SEARCH++. The program REACT++ performs user-specified chemical reactions on a docked molecule, so that reaction products can be evaluated for three dimensional complementarity with the macromolecular site. The program SEARCH++ performs an efficient conformation search on the reaction products using a hybrid backtrack [3, 4] and incremental construction [5, 6] algorithm. We have applied the programs to HIV protease–inhibitor complexes as test systems. We found that we can differentiate high-affinity ligands based on several measures: interaction energies, occupancy of protein subsites and the number of successfully docked conformations for each product. Encouraged by the results in the test case, we applied the programs to propose novel inhibitors of HIV protease. These inhibitors can be generated by organic reactions using commercially available reagents. They are alternatives to the inhibitors synthesized by Glaxo [7, 8].  相似文献   

11.
Designing proteins with novel protein/protein binding properties can be achieved by combining the tools that have been developed independently for protein docking and protein design. We describe here the sequence-independent generation of protein dimer orientations by protein docking for use as scaffolds in protein sequence design algorithms. To dock monomers into sequence-independent dimer conformations, we use a reduced representation in which the side chains are approximated by spheres with atomic radii derived from known C2 symmetry-related homodimers. The interfaces of C2-related homodimers are usually more hydrophobic and protein core-like than the interfaces of heterodimers; we parameterize the radii for docking against this feature to capture and recreate the spatial characteristics of a hydrophobic interface. A fast Fourier transform-based geometric recognition algorithm is used for docking the reduced representation protein models. The resulting docking algorithm successfully predicted the wild-type homodimer orientations in 65 out of 121 dimer test cases. The success rate increases to approximately 70% for the subset of molecules with large surface area burial in the interface relative to their chain length. Forty-five of the predictions exhibited less than 1 A C(alpha) RMSD compared to the native X-ray structures. The reduced protein representation therefore appears to be a reasonable approximation and can be used to position protein backbones in plausible orientations for homodimer design.  相似文献   

12.
An increasing number of docking/scoring programs are available that use different sampling and scoring algorithms. A reliable scoring function is the crucial element of such approaches. Comparative studies are needed to evaluate their current capabilities. DOCK4 with force field and PMF scoring as well as FlexX were used to evaluate the predictive power of these docking/scoring approaches to identify the correct binding mode of 61 MMP-3 inhibitors in a crystal structure of stromelysin and also to rank them according to their different binding affinities. It was found that DOCK4/PMF scoring performs significantly better than FlexX and DOCK4/FF in both ranking ligands and predicting their binding modes. Most notably, DOCK4/PMF was the only scoring/docking approach that found a significant correlation between binding affinity and predicted score of the docked inhibitors. However, comparing only those cases where the correct binding mode was identified (scoring highest among sampled poses), FlexX showed the best `fine tuning' (lowest rmsd) in predicted binding modes. The results suggest that not so much the sampling procedure but rather the scoring function is the crucial element of a docking program.  相似文献   

13.
A flexible docking algorithm was developed for studying the inclusion complexes of cyclodextrins with steroids in aqueous solution by an optimization method and an empirical function. The function is used to estimate the binding free energy including intermolecular interaction energy, the conformational energy change, and the solvation energy. The bimodal complexations of twelve steroids in β- and γ-CD cavities were studied by the algorithm. For the two orientations of the guests in the cavity, the possible binding regions were investigated, and the lowest energies for the inclusion complexes in the binding regions were obtained. The stability constant for each orientation was estimated from the optimized energy components by a quantitative model. Therefore, the preferential orientations of the guests were found out from the results finally.This revised version was published online in July 2005 with a corrected issue number.  相似文献   

14.
A flexible docking algorithm was developed for studying the inclusion complexes of cyclodextrins with steroids in aqueous solution by an optimization method and an empirical function. The function is used to estimate the binding free energy including intermolecular interaction energy, the conformational energy change, and the solvation energy. The bimodal complexations of twelve steroids in β- and γ-CD cavities were studied by the algorithm. For the two orientations of the guests in the cavity, the possible binding regions were investigated, and the lowest energies for the inclusion complexes in the binding regions were obtained. The stability constant for each orientation was estimated from the optimized energy components by a quantitative model. Therefore, the preferential orientations of the guests were found out from the results finally.  相似文献   

15.
16.
The identification of hot spots, i.e., binding regions that contribute substantially to the free energy of ligand binding, is a critical step for structure-based drug design. Here we present the application of two fragment-based methods to the detection of hot spots for DJ-1 and glucocerebrosidase (GCase), targets for the development of therapeutics for Parkinson’s and Gaucher’s diseases, respectively. While the structures of these two proteins are known, binding information is lacking. In this study we employ the experimental multiple solvent crystal structures (MSCS) method and computational fragment mapping (FTMap) to identify regions suitable for the development of pharmacological chaperones for DJ-1 and GCase. Comparison of data derived via MSCS and FTMap also shows that FTMap, a computational method for the identification of fragment binding hot spots, is an accurate and robust alternative to the performance of expensive and difficult crystallographic experiments.  相似文献   

17.
A set of 32 known thrombin inhibitors representing different chemical classes has been used to evaluate the performance of two implementations of incremental construction algorithms for flexible molecular docking: DOCK 4.0 and FlexX 1.5. Both docking tools are able to dock 10–35% of our test set within 2 Å of their known, bound conformations using default sampling and scoring parameters. Although flexible docking with DOCK or FlexX is not able to reconstruct all native complexes, it does offer a significant improvement over rigid body docking of single, rule-based conformations, which is still often used for docking of large databases. Docking of sets of multiple conformers of each inhibitor, obtained with a novel protocol for diverse conformer generation and selection, yielded results comparable to those obtained by flexible docking. Chemical scoring, which is an empirically modified force field scoring method implemented in DOCK 4.0, outperforms both interaction energy scoring by DOCK and the Böhm scoring function used by FlexX in rigid and flexible docking of thrombin inhibitors. Our results indicate that for reliable docking of flexible ligands the selection of anchor fragments, conformational sampling and currently available scoring methods still require improvement.  相似文献   

18.
We have developed a new docking program that explores ligand flexibility. This program can be applied to database searches. The program is similar in concept to earlier efforts, but it has been automated and improved. The algorithm begins by selecting an anchor fragment of a ligand. This fragment is protonated, as needed, and then placed in the receptor by the DOCK algorithm, followed by minimization using a simplex method. Finally, the conformations of the remaining parts of the putative ligands are searched by a limited backtrack method and minimized to get the most stable conformation. To test the efficiency of this method, the program was used to regenerate ten ligand–protein complex structures. In all cases, the docked ligands basically reproduced the crystallographic binding modes. The efficiency of this method was further tested by a database search. Ten percent of molecules from the Available Chemicals Directory (ACD) were docked to a dihydrofolate reductase structure. Most of the top-ranking molecules (7 of the top 13 hits) are dihydrofolate or methotrexate derivatives, which are known to be DHFR inhibitors, demonstrating the suitability of this program for screening molecular databases. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1812–1825, 1997  相似文献   

19.
Binding hot spots, protein regions with high binding affinity, can be identified by using X-ray crystallography or NMR spectroscopy to screen libraries of small organic molecules that tend to cluster at such hot spots. FTMap, a direct computational analogue of the experimental screening approaches, uses 16 different probe molecules for global sampling of the surface of a target protein on a dense grid and evaluates the energy of interaction using an empirical energy function that includes a continuum electrostatic term. Energy evaluation is based on the fast Fourier transform correlation approach, which allows for the sampling of billions of probe positions. The grid sampling is followed by off-grid minimization that uses a more detailed energy expression with a continuum electrostatics term. FTMap identifies the hot spots as consensus clusters formed by overlapping clusters of several probes. The hot spots are ranked on the basis of the number of probe clusters, which predicts their binding propensity. We applied FTMap to nine structures of hen egg-white lysozyme (HEWL), whose hot spots have been extensively studied by both experimental and computational methods. FTMap found the primary hot spot in site C of all nine structures, in spite of conformational differences. In addition, secondary hot spots in sites B and D that are known to be important for the binding of polysaccharide substrates were found. The predicted probe-protein interactions agree well with those seen in the complexes of HEWL with various ligands and also agree with an NMR-based study of HEWL in aqueous solutions of eight organic solvents. We argue that FTMap provides more complete information on the HEWL binding site than previous computational methods and yields fewer false-positive binding locations than the X-ray structures of HEWL from crystals soaked in organic solvents.  相似文献   

20.
As part of the SAMPL4 blind challenge, filtered AutoDock Vina ligand docking predictions and large scale binding energy distribution analysis method binding free energy calculations have been applied to the virtual screening of a focused library of candidate binders to the LEDGF site of the HIV integrase protein. The computational protocol leveraged docking and high level atomistic models to improve enrichment. The enrichment factor of our blind predictions ranked best among all of the computational submissions, and second best overall. This work represents to our knowledge the first example of the application of an all-atom physics-based binding free energy model to large scale virtual screening. A total of 285 parallel Hamiltonian replica exchange molecular dynamics absolute protein-ligand binding free energy simulations were conducted starting from docked poses. The setup of the simulations was fully automated, calculations were distributed on multiple computing resources and were completed in a 6-weeks period. The accuracy of the docked poses and the inclusion of intramolecular strain and entropic losses in the binding free energy estimates were the major factors behind the success of the method. Lack of sufficient time and computing resources to investigate additional protonation states of the ligands was a major cause of mispredictions. The experiment demonstrated the applicability of binding free energy modeling to improve hit rates in challenging virtual screening of focused ligand libraries during lead optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号