首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
交联密度对脂肪族聚氨酯弹性体结构与性能的影响   总被引:2,自引:0,他引:2  
采用异佛尔酮二异氰酸酯(IPDI)与聚醚二元醇、三羟甲基丙烷(TMP)和1,4-丁二醇反应制备了具有不同交联密度的脂肪族聚氨酯弹性体.研究结果表明,当聚氨酯弹性体的硬段含量为40 wt%时,随着TMP含量的增加,聚氨酯弹性体的交联密度线性增加.随着聚氨酯弹性体交联密度的提高,聚氨酯中硬段相的玻璃化转变温度由32℃降为2...  相似文献   

2.
利用 1 ,5_萘二异氰酸酯 (NDI)和 1 ,4_丁二醇 (BDO)为均匀硬质分子单体 ,与不同软质分子单体 (聚醚、聚酯、聚硅氧烷 )缩合制备多嵌段聚氨酯弹性体 ,详细研究了硬嵌段相 (NDI)弹性体的结构与性能间的关系 ,发现随着硬嵌段相长度的增加 ,或者氨基甲酸酯中胺基与聚醚、聚酯、聚硅氧烷中软段氧原子间氢键的减弱 ,都导致微相分离程度的增加 ,造成聚合物熔点和熔化热的升高。硬嵌段相熔化的多峰行为是由于形成了NDI/BDO半微晶区 ,在退火时转变为更加有序的结晶微区 ,当温度高于 1 80℃时 ,由于氢键的断裂 ,NDI/BDO硬嵌段发生分解反应 ,该过程源于不很有序的硬嵌段半结晶微区。当温度高于 2 5 0℃时 ,发生快速的分解。在动态力学行为方面 ,NDI基聚醚弹性体比其它硅氧烷基的弹性体展示了更高的硬嵌段区的稳定性 ,同时 ,在使用温度范围内 ,也显示出最高的储能模量值 ,表明刚性对温度的依赖性 ,以及NDI/BDO硬嵌段中活性填料的显著影响  相似文献   

3.
以均苯四甲酸酐、 D,L-苯丙氨酸和1,4-丁炔二醇为原料合成了一种含有酰亚胺环和炔基的二醇, 并以其为扩链剂, 采用预聚体法, 与4,4-二苯基甲烷二异氰酸酯(MDI)和聚四氢呋喃醚二醇(PTMG)反应, 合成了不同硬段含量的主链含有酰亚胺环和炔基的热塑性聚酰亚胺型聚氨酯弹性体. 用红外光谱(FTIR)、 电子拉力机、 热失重分析(TG)、 广角X射线衍射(XRD)、 UL-94垂直燃烧和极限氧指数对聚酰亚胺型聚氨酯弹性体进行了表征. 结果表明, 这种聚氨酯呈现出无定形结构; 其拉伸强度随着硬段含量的增加而增大; 与传统的热塑性聚氨酯相比, 酰亚胺环和炔基改性的聚酰亚胺型聚氨酯弹性体的热分解过程非常缓慢, 呈现出较好的热稳定性; 不同硬段含量的聚酰亚胺型聚氨酯弹性体的UL-94垂直燃烧均达到V-2级别; 其极限氧指数随着硬段含量的增加而增大.  相似文献   

4.
以均苯四甲酸酐、D,L-苯丙氨酸和1,4-丁炔二醇为原料合成了一种含有酰亚胺环和炔基的二醇,并以其为扩链剂,采用预聚体法,与4,4-二苯基甲烷二异氰酸酯(MDI)和聚四氢呋喃醚二醇(PTMG)反应,合成了不同硬段含量的主链含有酰亚胺环和炔基的热塑性聚酰亚胺型聚氨酯弹性体. 用红外光谱(FTIR)、电子拉力机、热失重分析(TG)、广角X射线衍射(XRD)、UL-94垂直燃烧和极限氧指数对聚酰亚胺型聚氨酯弹性体进行了表征. 结果表明,这种聚氨酯呈现出无定形结构;其拉伸强度随着硬段含量的增加而增大;与传统的热塑性聚氨酯相比,酰亚胺环和炔基改性的聚酰亚胺型聚氨酯弹性体的热分解过程非常缓慢,呈现出较好的热稳定性;不同硬段含量的聚酰亚胺型聚氨酯弹性体的UL-94垂直燃烧均达到V-2级别;其极限氧指数随着硬段含量的增加而增大.  相似文献   

5.
用DSC法研究了二乙基甲苯二胺和4,4'-二氨基二苯基甲烷扩链的硬段含量为27%-60%的两个系列的反应注射成型聚氨酯脲弹性体的微相分离,聚合反应动力学对RIM PUU的微相分离有很大影响,随着硬段浓度的增加微相分离程度下降,MDA扩链系列聚合总反应速度快,微相分离驱动力弱,在硬段生成反应比软段生成反应快的条件下,该系列的微相分离程度较低,聚合总反应快,且硬段间氢键化作用很强的性质造成RIM PU  相似文献   

6.
用DSC法研究了二乙基甲苯二胺和4,4'-氨基二苯基甲烷(MDA)扩链的硬段含量为27%~60%的两个系列的反应注射成型(RIM)聚氨酯脲(PUU)弹性体的微相分离。聚合反应动力学对RIMPUU的微相分离有很大影响.随着硬段浓度的增加微相分离程度下降,MDA扩链系列聚合总反应速度快,微相分离驱动力弱,在硬段生成反应比软段生成反应快的条件下,该系列的微相分离程度较低。聚合总反应快,且硬段间氢键化作用很强的性质造成RIMPUU非平衡的形态。聚合总反应速度的增加相当于微相分离驱动力的下降。  相似文献   

7.
以1,6-六亚甲基二异氰酸酯(HDI)为硬段、聚碳酸酯二元醇(PCDL)为软段、赖氨酸乙酯盐酸盐(Lys-OEt)作为扩链剂合成一种新型聚碳酸酯型聚氨酯弹性体.通过力学性能测试、原子力显微镜(AFM)、红外光谱分析和细胞培养,探讨了聚氨酯弹性体软硬段比例、扩链剂对材料性能的影响和材料的细胞毒性.结果表明:随着硬段含量的增加,聚氨酯的机械性能提高.采用Lys-OEt扩链的聚氨酯弹性体拉伸强度达到18.6 MPa,在Lys-OEt、1,4-丁二醇(BDO)、二羟甲基丙酸(DMPA)3种扩链剂中力学性能最佳.初步的细胞培养实验证明,该材料具有良好的细胞相容性.  相似文献   

8.
水性聚氨酯硬段含量对其氢键相互作用及性能的影响   总被引:2,自引:0,他引:2  
异佛尔酮二异氰酸酯(IPDI)、二羟甲基丙酸(DMPA)作为硬段,合成了水性聚氨酯。 研究了硬段含量(质量分数)对乳液稳定性、膜耐热和力学性能等的影响。 当硬段质量分数低于26%时,乳液贮存稳定性较差。 随着硬段含量增加,聚氨酯膜拉伸强度迅速增加,断裂伸长率略有降低;红外光谱显示,自由的N-H伸缩振动峰强度减弱,氢键化N-H的振动峰强度增加;同时C=O伸缩振动峰整体向低波数方向移动,C=O伸缩振动峰峰形有明显的变化;DSC测试在50~125 ℃出现明显的氢键解离现象,吸热峰增强,证实了氢键作用力随着硬段含量的增加逐渐增强。 TG测试表明,水性聚氨酯硬段和软段分步解离,随着硬段含量的增加,硬段分解温度降低,水性聚氨酯耐热性能下降。  相似文献   

9.
设计合成2-甲基-2-肉桂酰氧甲基-1,3-丙二醇(MCO)作为扩链剂,并以聚乳酸二醇(PLA diol)为软段,异佛尔酮二异氰酸酯(IPDI)和MCO为硬段制备了一系列侧链含有肉桂基团的可生物降解聚氨酯.结果表明MCO具有较高的反应活性,可满足制备高分子量聚氨酯的要求.聚氨酯结构中的肉桂双键可在紫外光和光引发剂的共同作用下,发生快速的交联反应,短时间内形成交联结构.软段结构相同时,凝胶含量随MCO含量的增加而增加.硬段结构相同时,凝胶含量随软段分子量的增加而减少.适度的交联可提高拉伸强度和形变回复率.  相似文献   

10.
聚醚氨酯的微区形态   总被引:2,自引:0,他引:2  
<正> 聚醚氨酯热塑弹性体是属于(AB)n类型的线型多嵌段共聚物,包括交替的硬段和软段单元.自从1966年Cooper和Tobolsky首先提出聚氨酯具有微相分离的本体结构之假设以后,至今已有大量文献报道了这类材料结构形态与性能关系的研究结果. Wilkes和Koberstein等使用SAXS研究了聚氨酯体系的形态特征.一般认为,聚氨酯材料的微相结构包括一个叠层状或类似叠层状形态,由相分离的软段和硬段组成,平均尺寸为100A的数量级,在软硬段微区之间还存在一相混合的过渡区,其厚度可以从几个埃至几十个埃.然而,SAXS虽然能够高分辨地给出多相体系相分离情况的定  相似文献   

11.
聚氨酯弹性体相分离程度的研究   总被引:3,自引:0,他引:3  
热塑型聚氨酯弹性体(TPUE)的动态力学性能和热性能研究已有许多报导,但多集中于弹性体的链结构及其组成等方面,本文则侧重于研究聚醚氨酯(ET)和聚酯氨酯的相分离过程及其程度,考察硬段含量(W_h)和软段分子量(M_(n·3)等因素对微相结构的影响。  相似文献   

12.
采用溶液共混法制备了一系列不同组成的聚氨酯/丝素共混膜.利用红外光谱和广角X-射线衍射表征聚氨酯/丝素共混膜的结构;扫描电镜观察共混膜的断面;紫外-可见光谱测定共混膜的透光性;运用拉伸实验研究不同配比聚氨酯/丝素共混膜的力学性能.结果表明聚氨酯和丝素蛋白分子间存在较强的氢键相互作用.当丝素含量低于3 wt%时,试膜的断面较光滑,丝素蛋白分子进入聚氨酯网状结构中,破坏了聚氨酯分子内硬段和软段间的氢键作用.随着丝素含量进一步增大,丝素小颗粒均匀分散在聚氨酯基体中,二者之间具有较好的相容性.本实验所采用的制膜条件有利于促进丝素蛋白大分子的结晶.丝素蛋白对聚氨酯具有良好的增强效果,当丝素含量从0到5.6 wt%变化时,共混试片的断裂强度由0.56 MPa增大到4.60 MPa,杨氏模量由0.14 MPa增大到1.71 MPa,断裂伸长率从1065%下降到988%.丝素蛋白增强聚氨酯共混膜的强度显著增加,但弹性基本保持不变.  相似文献   

13.
使用溶剂共混法制备了热塑性聚氨酯弹性体/纳米二氧化硅复合材料,采用多种实验技术阐明了纳米二氧化硅诱导聚氨酯弹性体中软段结晶的微观机理.TEM表明纳米二氧化硅在聚氨酯弹性体中有很好的分散性,DSC实验发现高温退火后等温结晶处理的聚氨酯纳米复合材料中软段的结晶性和玻璃化转变温度显著提高,纳米二氧化硅的加入量影响玻璃化转变温度和熔融焓最终的平衡值以及它们的增长速率.固体NMR实验发现退火后复合材料中的软段分子运动受到限制,而硬段的链运动明显提高.上述实验结果表明硬段链间的氢键在高温下被破坏,在退火过程中纳米二氧化硅与硬段间的相互作用使得硬段链运动增强,进而促进了与硬段相连的软段结晶能力的提高.基于实验结果建立了聚氨酯/无机纳米复合材料在高温退火和低温等温结晶处理下微观结构和动力学演化的物理模型.  相似文献   

14.
用固体高分辨核磁共振碳谱方法对不同拉伸比的聚醚酯嵌段共聚物的聚集态结构和分子运动进行了研究,发现共聚物中的聚四氢呋喃(PTMO)链段在拉伸比为2 0时开始就出现结晶,且结晶度和晶片厚度都随着拉伸比增加而明显增加,而样品中未结晶部分的高频分子运动随拉伸比的变化则不明显,拉伸导致的PTMO结晶主要发生在“纯”的PTMO非晶区.通过1 H自旋扩散实验,估算出在拉伸比为4 . 0倍时,PTMO非晶区与结晶区的界面层厚度为1 .1nm ,PTMO非晶区与硬段的结晶区的界面厚度约为3 .1nm .  相似文献   

15.
采用实验室小型RIM机制备了一组不同芳香二胺扩链的嵌段聚氨酯-脲(PUU)弹性体,借助于IR、DSC、DMTA、SEM以及拉伸试验等测试手段对其结构与性能进行了研究.通过比较由MDA、DETDA以及CAMDA三种不同活性和结构的芳香二胺扩链剂与二异氰酸酯反应形成的硬链段对RIMPUU弹性体的结构与性能的影响,表明:MDA基RIMPUU中软、硬链段微区界面作用指数很小,微相分离程度却很大,其性能最差;DETDA基RIMPUU弹性体有理想的界面作用指数,以及适当的微相分离程度,其性能位于三者之中最佳.DMTA研究证实在一定的温度范围内DETDA基RIMPUU的模量稳定性最好.  相似文献   

16.
不同硬段含量脂肪族聚脲的结构与性能研究   总被引:5,自引:0,他引:5  
通过端氨基聚醚、异佛尔酮二异氰酸酯和异佛尔酮二胺反应 ,合成了一系列不同硬段含量的脂肪族聚脲 ,并用DSC和FTIR等考察了硬段含量对聚脲的微观结构与力学性能的影响 .研究结果表明 ,聚脲呈现部分微观分相的形态 ,随硬段含量增加 ,聚脲中软段和硬段间的相容性提高 ,脲羰基的氢键化程度增加 ,但软段的玻璃化转变温度变化不大 ;此外 ,材料的拉伸强度、撕裂强度和硬度等也随着硬段含量的增加而显著提高 .  相似文献   

17.
丁苯、丁腈基聚氨酯的形态与性能   总被引:2,自引:0,他引:2  
用示差扫描量热法 (DSC)、红外分光光度计 (FTIR)和原子力显微镜 (AFM)研究了端羟基聚丁二烯 苯乙烯共聚物 (HTBS)、端羟基聚丁二烯 丙烯腈共聚物 (HTBN)和端羟基聚丁二烯 (HTPB)与甲苯二异氰酸酯、1 ,4 丁二醇构成的溶液法聚二烯烃基聚氨酯 (PU)的形态结构 .结果表明HTPB和HTBS基PU的相分离程度很大 ,而HTBN基PU的相分离程度小 .这可能归因于HTBS软段的极性低 ,不能与硬段形成氢键 ,而HTBN软段中的腈基具有很强的极性 ,且可以与硬段形成氢键作用 ,增加了软硬段间的相容性 ,相分离程度明显降低 .AFM表明HTBN PU随着硬段含量提高 ,表面粗糙度增大 ,由软段为连续相逐渐过渡到双连续结构 .在硬段含量 6 3%时 ,HTBN和HTPB基PU均呈双连续结构 ,而HTBS PU中硬段为连续相 .HTBN PU软段的相区尺寸在1 2nm左右 ,表面粗糙度较大 ,HPBS PU软段的相区尺寸在 1 1nm左右 ,表面粗糙度最小 ,HTPB PU存在 1 4nm和 5 0nm大小不等的软段相区尺寸 .力学性能表明 ,在软段中引入苯乙烯和丙烯腈结构 ,可使聚氨酯抗张强度分别提高 1 5和 2倍 ,模量和断裂伸长率也明显提高  相似文献   

18.
通过双端羟基聚异丁烯(HO-PIB-OH)与4,4'-二环己基甲烷二异氰酸酯(HMDI)及1,4-丁二醇(BDO)反应,设计合成一系列具有不同聚氨基甲酸丁二酯硬段长度的聚异丁烯基热塑弹性体(PIB-TPE),研究HMDI/PIB摩尔比值对PIB-TPE的聚集态结构、弹性回复、自修复性能、表面亲/疏水性、动态力学性能和拉伸性能的影响.结果表明:在PIB-TPE中,软段是完全饱和结构的PIB柔性链段,聚氨基甲酸丁二酯硬段通过氢键(无序氢键、有序氢键)形成结晶物理交联微区((3.6±0.5)nm),软段与硬段呈现明显的微相分离现象,常温下形成了三维超分子网络结构,高温下发生结晶熔融与氢键解离,超分子网络结构解散,形成黏流态,降低温度又可形成三维超分子网络结构;随着材料储存时间延长,无序氢键逐渐向有序氢键转变,有利于提高材料的拉伸强度和断裂伸长率.结晶熔融与氢键解离温度依赖于PIB-TPE中硬段长度,当HMDI/PIB摩尔比值小于19,硬段结晶熔融峰温度可达119℃以上,提高了PIB-TPE服役温度.PIB-TPE材料具有良好的弹性回复和自修复性能,且其膜表面的亲/疏水性可以通过HMDI/PIB摩尔比值或正己烷蒸汽常温下诱导表面自组装来调节,当HMDI/PIB摩尔比值从6增加至21,PIB-TPE膜表面的水接触角(WCA)由98.7°降低至77.8°,即由疏水性转变为亲水性.此外,PIB-TPE热塑弹性体中的完全饱和柔性PIB软段赋予其优良的减振阻尼性能,其损耗因子(tanδ)大于0.3的温域较宽(?55~25℃),且tanδ最大值(tanδmax)达到1.05.上述多嵌段聚异丁烯基热塑弹性体在生物医用、减振阻尼、自修复等功能材料领域具有潜在的应用前景.  相似文献   

19.
徐旻  沈洁  张红  胡杨  李凌霄  阚成友 《高分子学报》2016,(12):1686-1694
以端羟丙基聚二甲基硅氧烷(HP-PDMS)、异佛尔酮二异氰酸酯、2,2-二羟甲基丁酸等为主要原料,采用分步投料法和无皂相反转乳化工艺制得粒径约50 nm的有机硅-聚氨酯共聚乳液,并对有机硅-聚氨酯乳胶膜的相结构和性能进行了表征,考察了HP-PDMS用量对乳胶膜相结构和性能的影响.DSC测试结果显示,与聚醚型聚氨酯乳胶膜相比,有机硅-聚氨酯乳胶膜中存在明显的相分离结构.FTIR分析结果表明,有机硅-聚氨酯乳胶膜硬段之间存在较强的氢键,它促进了相分离结构的形成.从AFM相图上可以观察到有机硅-聚氨酯乳胶膜中存在明显的海岛型相分离结构,其中聚硅氧烷软段的无定形微区构成了岛状分散相.随着有机硅含量的增加,有机硅-聚氨酯乳胶膜的相分离程度增加,弹性模量降低,断裂伸长率和柔韧性显著升高.有机硅-聚氨酯乳胶膜的起始分解温度低于聚醚型聚氨酯乳胶膜,但其在高温阶段的稳定性明显优于后者;对乳胶膜接触角和吸水率的研究表明,有机硅-聚氨酯乳胶膜的耐水性远高于聚醚型聚氨酯乳胶膜.  相似文献   

20.
采用本体聚合和溶液聚合两种方法,合成了一系列用聚乙二酸丁二醇酯二醇作为软段的聚氨酯弹性体。研究了不同硬段含量和聚醚添加量对聚氨酯弹性体综合性能的影响。利用红外光谱,机械性能测试、热分析、耐水解老化实验和记忆回弹性能等测试对样品进行表征与分析。结果表明:当硬段含量为33%~34%,软段中聚醚添加量为4%~5%(占软段的质量分数)时,弹性体具有较好的力学性能和耐老化性能,弹性回复率可维持在80%~85%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号