首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
Several fluorine-18-labeled PET β-amyloid (Aβ) plaque radiotracers for Alzheimer’s disease (AD) are in clinical use. However, no radioiodinated imaging agent for Aβ plaques has been successfully moved forward for either single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging. Radioiodinated pyridyl benzofuran derivatives for the SPECT imaging of Aβ plaques using iodine-123 and iodine-125 are being pursued. In this study, we assess the iodine-124 radioiodinated pyridyl benzofuran derivative 5-(5-[124I]iodobenzofuran-2-yl)-N,N-dimethylpyridin-2-amine ([124I]IBETA) (Ki = 2.36 nM) for utilization in PET imaging for Aβ plaques. We report our findings on the radioiododestannylation reaction used to prepare [124/125I]IBETA and evaluate its binding to Aβ plaques in a 5 × FAD mouse model and postmortem human AD brain. Both [125I]IBETA and [124I]IBETA are produced in >25% radiochemical yield and >85% radiochemical purity. The in vitro binding of [125I]IBETA and [124I]IBETA in transgenic 5 × FAD mouse model for Aβ plaques was high in the frontal cortex, anterior cingulate, thalamus, and hippocampus, which are regions of high Aβ accumulation, with very little binding in the cerebellum (ratio of brain regions to cerebellum was >5). The in vitro binding of [125I]IBETA and [124I]IBETA in postmortem human AD brains was higher in gray matter containing Aβ plaques compared to white matter (ratio of gray to white matter was >5). Anti-Aβ immunostaining strongly correlated with [124/125I]IBETA regional binding in both the 5 × FAD mouse and postmortem AD human brains. The binding of [124/125I]IBETA in 5 × FAD mouse and postmortem human AD brains was displaced by the known Aβ plaque imaging agent, Flotaza. Preliminary PET/CT studies of [124I]IBETA in the 5 × FAD mouse model suggested [124I]IBETA was relatively stable in vivo with a greater localization of [124I]IBETA in the brain regions with a high concentration of Aβ plaques. Some deiodination was observed at later time points. Therefore, [124I]IBETA may potentially be a useful PET radioligand for Aβ plaques in brain studies.  相似文献   

2.
Vitamin E, a natural antioxidant, is of interest to scientists, health care pundits and faddists; its nutritional and biomedical attributes may be validated, anecdotal or fantasy. Vitamin E is a mixture of tocopherols (TPs) and tocotrienols (T-3s), each class having four substitutional isomers (α-, β-, γ-, δ-). Vitamin E analogues attain only low concentrations in most tissues, necessitating exacting invasive techniques for analytical research. Quantitative positron emission tomography (PET) with an F-18-labeled molecular probe would expedite access to Vitamin E’s biodistributions and pharmacokinetics via non-invasive temporal imaging. (R)-6-(3-[18F]Fluoropropoxy)-2,7,8-trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-chromane ([18F]F-γ-T-3) was prepared for this purpose. [18F]F-γ-T-3 was synthesized from γ-T-3 in two steps: (i) 1,3-di-O-tosylpropane was introduced at C6-O to form TsO-γ-T-3, and (ii) reaction of this tosylate with [18F]fluoride in DMF/K222. Non-radioactive F-γ-T-3 was synthesized by reaction of γ-T-3 with 3-fluoropropyl methanesulfonate. [18F]F-γ-T-3 biodistribution in a murine tumor model was imaged using a small-animal PET scanner. F-γ-T-3 was prepared in 61% chemical yield. [18F]F-γ-T-3 was synthesized in acceptable radiochemical yield (RCY 12%) with high radiochemical purity (>99% RCP) in 45 min. Preliminary F-18 PET images in mice showed upper abdominal accumulation with evidence of renal clearance, only low concentrations in the thorax (lung/heart) and head, and rapid clearance from blood. [18F]F-γ-T-3 shows promise as an F-18 PET tracer for detailed in vivo studies of Vitamin E. The labeling procedure provides acceptable RCY, high RCP and pertinence to all eight Vitamin E analogues.  相似文献   

3.
We report [18F]nifene binding to α4β2* nicotinic acetylcholinergic receptors (nAChRs) in Parkinson’s disease (PD). The study used transgenic Hualpha-Syn(A53T) PD mouse model of α-synucleinopathy for PET/CT studies in vivo and autoradiography in vitro. Additionally, postmortem human PD brain sections comprising of anterior cingulate were used in vitro to assess translation to human studies. Because the small size of mice brain poses challenges for PET imaging, improved methods for radiosynthesis of [18F]nifene and simplified PET/CT procedures in mice were developed by comparing intravenous (IV) and intraperitoneal (IP) administered [18F]nifene. An optimal PET/CT imaging time of 30–60 min post injection of [18F]nifene was established to provide thalamus to cerebellum ratio of 2.5 (with IV) and 2 (with IP). Transgenic Hualpha-Syn(A53T) mice brain slices exhibited 20–35% decrease while in vivo a 20–30% decrease of [18F]nifene was observed. Lewy bodies and α-synuclein aggregates were confirmed in human PD brain sections which lowered the [18F]nifene binding by more than 50% in anterior cingulate. Thus [18F]nifene offers a valuable tool for PET imaging studies of PD.  相似文献   

4.
A series of novel synthetic substituted benzo[d]oxazole-based derivatives (5a–5v) exerted neuroprotective effects on β-amyloid (Aβ)-induced PC12 cells as a potential approach for the treatment of Alzheimer’s disease (AD). In vitro studies show that most of the synthesized compounds were potent in reducing the neurotoxicity of Aβ25-35-induced PC12 cells at 5 μg/mL. We found that compound 5c was non-neurotoxic at 30 μg/mL and significantly increased the viability of Aβ25-35-induced PC12 cells at 1.25, 2.5 and 5 μg/mL. Western blot analysis showed that compound 5c promoted the phosphorylation of Akt and glycogen synthase kinase (GSK-3β) and decreased the expression of nuclear factor-κB (NF-κB) in Aβ25-35-induced PC12 cells. In addition, our findings demonstrated that compound 5c protected PC12 cells from Aβ25-35-induced apoptosis and reduced the hyperphosphorylation of tau protein, and decreased the expression of receptor for AGE (RAGE), β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), inducible nitric oxide synthase (iNOS) and Bcl-2-associated X protein/B-cell lymphoma 2 (Bax/Bcl-2) via Akt/GSK-3β/NF-κB signaling pathway. In vivo studies suggest that compound 5c shows less toxicity than donepezil in the heart and nervous system of zebrafish.  相似文献   

5.
Positron emission tomography (PET) imaging of activated T-cells with N-(4-[18F]fluorobenzoyl)-interleukin-2 ([18F]FB-IL-2) may be a promising tool for patient management to aid in the assessment of clinical responses to immune therapeutics. Unfortunately, existing radiosynthetic methods are very low yielding due to complex and time-consuming chemical processes. Herein, we report an improved method for the synthesis of [18F]FB-IL-2, which reduces synthesis time and improves radiochemical yield. With this optimized approach, [18F]FB-IL-2 was prepared with a non-decay-corrected radiochemical yield of 3.8 ± 0.7% from [18F]fluoride, 3.8 times higher than previously reported methods. In vitro experiments showed that the radiotracer was stable with good radiochemical purity (>95%), confirmed its identity and showed preferential binding to activated mouse peripheral blood mononuclear cells. Dynamic PET imaging and ex vivo biodistribution studies in naïve Balb/c mice showed organ distribution and kinetics comparable to earlier published data on [18F]FB-IL-2. Significant improvements in the radiochemical manufacture of [18F]FB-IL-2 facilitates access to this promising PET imaging radiopharmaceutical, which may, in turn, provide useful insights into different tumour phenotypes and a greater understanding of the cellular nature and differential immune microenvironments that are critical to understand and develop new treatments for cancers.  相似文献   

6.
This study describes a single step conjugation of Glycylglycine (GlyGly) which is a small peptide, with [18F]FDG via oxime formation. Amiooxy-functionalization of GlyGly (AO-GlyGly) was accomplished through the reaction of Boc-aminooxy succinimide ester. Conjugation reaction was performed at 100 °C for 30 min in a vial containing AO-GlyGly and [18F]FDG solution. The radiolabeled product ([18F]FDG-GlyGly) was obtained with 98.65?±?0.35% yield without any purification step which makes this method more attractive for 18F radiolabeling. The present study is concluded with an in vivo pilot animal PET study to assess biodistribution and kinetics of chemoselectively [18F]FDG tagged GlyGly in vivo.  相似文献   

7.
The aim of this work is to compare [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 PET/CT as imaging agents in patients with prostate cancer (PCa). Comparisons were made by evaluating times and costs of the radiolabeling process, imaging features including pharmacokinetics, and impact on patient management. The analysis of advantages and drawbacks of both radioligands might help to make a better choice based on firm data. For [68Ga]Ga-PSMA-11, the radiochemical yield (RCY) using a low starting activity (L, average activity of 596.55 ± 37.97 MBq) was of 80.98 ± 0.05%, while using a high one (H, average activity of 1436.27 ± 68.68 MBq), the RCY was 71.48 ± 0.04%. Thus, increased starting activities of [68Ga]-chloride negatively influenced the RCY. A similar scenario occurred for [18F]PSMA-1007. The rate of detection of PCa lesions by Positron Emission Tomography/Computed Tomography (PET/CT) was similar for both radioligands, while their distribution in normal organs significantly differed. Furthermore, similar patterns of biodistribution were found among [18F]PSMA-1007, [68Ga]Ga-PSMA-11, and [177Lu]Lu-PSMA-617, the most used agent for RLT. Moreover, the analysis of economical aspects for each single batch of production corrected for the number of allowed PET/CT examinations suggested major advantages of [18F]PSMA-1007 compared with [68Ga]Ga-PSMA-11. Data from this study should support the proper choice in the selection of the PSMA PET radioligand to use on the basis of the cases to study.  相似文献   

8.
Summary To control virtually the toxic compounds and to improve quality control of the solution of 2-deoxy-2-[18F]fluoro-d-glucose (2-[18F]FDG), the products of its autoradiolysis were analyzed by high-performance liquid chromatography with electrospray mass spectrometric and radiometric detectors (HPLC/MS/RAD), thin layer chromatography on TLC silica plate and HPTLC on amino modified silica plate. Except Kryptofix2.2.2, glucose and fluoride anion, no by-products and impurities were observed by LC/MS analysis of fresh 2-[18F]FDG samples. The analysis performed in the time interval of 6 to 48 hours after the end of 2-[18F]FDG synthesis indicated that the activity of the autoradiolysis products separated by HPLC did not exceed 1.3%. As the main autoradiolysis products of 3.3 . 10-5 to 4.4 . 10-5M 2-[18F]FDG solution of original specific activity 0.5-1.5 GBq . cm-3 were established: arabinose - 2.8 μM (G= 0.07/100 eV), gluconic and glucuronic acids 1.8-0.5 μM (G =0.01-0.05/100 eV), arabinose and araburonic acids occurred under 0.5 μM concentration at residual glucose contents about 0.14 mM. Radiation chemical yields of active products were calculated from molar activity of 2-[18F]FDG and the percentage of their activity: 0.5% radiochemical yield of 2-[18F]fluoroglucuronic acid corresponds to the G = 0.004/100 eV and 0.3% yield of 2-[18F]fluorogluconic acid issues G = 0.003/100 eV.  相似文献   

9.

The goal of this work was to present two high-performance liquid chromatography (HPLC) method that could be applied for the determination of the total radioactive purity of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET). The separation of [18F]fluoride ions, [18F]FET and [18F]FET intermediate was accomplished on LiChrosper RP-18, 250?×?4 mm, 5 µm (Merck) analytical column. For mobile phase 10 mM potassium dihydrogen phosphate buffer at pH7 (A) and acetonitrile (B) was used: 0–2 min: 15% B; 2–12 min: 85% B; 12–15 min: 15% B, respectively. Analysis of [18F]FDG was performed using LiChrosper 100 NH2, 250?×?4.5 mm, 5 µm (Merck) analytical column. The initial mobile phase composition was 10 mM KH2PO4 buffer (pH7) and acetonitrile (15:85, v/v) and the acetonitrile ratio was decreased to 15% at 2 min after the sample injection and held for 5 min. Complete elution of [18F]fluoride ions from stationary phases could be achieved by adding 10 mg/mL K[19F]F to radioactive samples in a ratio 1:1 during the sample preparation. Recovery of [18F]fluoride ions ranged from 99.5 to 100.6%. The validation of the developed methods showed good results for linearity (r2?=?0.9981–0.9996), specificity (RS?=?3.7–10.2), repeatability (%Area RSD%?=?1.2–4.3%) and limit of quantitation (LOQ?=?1.6–4.5 kBq). During the cross-validation similar radiochemical purity values were obtained by the novel HPLC methods and thin layer chromatography performed according to the recommendations of the Ph. Eur. monographs.

  相似文献   

10.
Aziridines can undergo a range of ring-opening reactions with nucleophiles. The regio- and stereochemistry of the products depend on the substituents on the aziridine. Aziridine ring-opening reactions have rarely been used in radiosynthesis. Herein we report the ring opening of activated aziridine-2-carboxylates with [18F]fluoride. The aziridine was activated for nucleophilic attack by substitution of various groups on the aziridine nitrogen atom. Fluorine-18 radiolabelling was followed by ester hydrolysis and removal of the activation group. Totally regioselective ring opening and subsequent deprotection was achieved with tert-butyloxycarbonyl- and carboxybenzyl-activated aziridines to give α-[18F]fluoro-β-alanine in good radiochemical yield.  相似文献   

11.
Introduction: Benzodiazepines, including temazepam are described as TSPO antagonists. In fact, TSPO was initially described as a peripheral benzodiazepine receptor (PBR) with a secondary binding site for diazepam. TSPO is a potential imaging target of neuroinflammation because there is an amplification of the expression of this receptor. Objectives: Herein, we developed a novel fluorinated benzodiazepine ligand, [18F]Fluoroethyltemazepam ([18F]F-FETEM), for positron emission tomography (PET) imaging of translocator protein (18 kDa). Methods: [18F]F-FETEM was radiolabelled with an automated synthesizer via a one-pot procedure. We conducted a [18F]F-aliphatic nucleophilic substitution of a tosylated precursor followed by purification on C18 and Alumina N SPE cartridges. Quality control tests was also carried out. Results: We obtained 2.0–3.0% decay-uncorrected radiochemical activity yield (3.7% decay-corrected) within the whole synthesis time about 33 min. The radiochemical purity of [18F]F-FETEM was over 90% by TLC analysis. Conclusions: This automated procedure may be used as basis for future production of [18F]F-FETEM for preclinical PET imaging studies.  相似文献   

12.
Glycogen synthase kinase-3 α/β is involved in dysregulation of neuronal tau protein in Alzheimer's disease (AD). There is an unmet clinical need for a blood-brain barrier (BBB) permeable positron emission tomography (PET) probe for imaging of GSK-3α/β in the brain to understand the pathogenesis of AD. Herein, we synthesized two PET probes, [18F]F-CNBI and [18F]F-CNPIFE, and evaluated their BBB permeability and affinity towards GSK-3α/β. [19F]F-CNPIFE showed higher in-vitro binding towards GSK-3α/β (IC50=19.4±2.5 nM; n=3, for GSK-3α, IC50=19.4±3.8 nM; n=3, for GSK-3β) compared to [19F]F-CNBI (IC50=107.6±26.0 nM; n=4, for GSK-3α, IC50=105.3±18.2 nM; n=3, for GSK-3β). [18F]F-CNPIFE showed 9.5-fold higher brain uptake than [18F]F-CNBI, in normal FVB/NJ mice, which was increased by additional 1.5-fold on co-administration of [19F]F-CNPIFE with respect to [18F]F-CNBI. Overall, [18F]F-CNPIFE is a promising PET probe for GSK-3α/β imaging and warrants further evaluation in an AD mouse model.  相似文献   

13.
[18F]Florbetaben ([18F]BAY 94-9172) is a promising β-amyloid (Aβ) targeted PET-tracer currently in late stage clinical development. [18F]Florbetaben can assist in the more accurate diagnosis of Alzheimer’s Disease (AD) by non-invasive, in vivo detection of Aβ in the brain. To determine the arterial input function of the PET tracer—as part of a proof of mechanism (PoM) study—arterial samples were drawn from all subjects at predefined time points post injection (p.i.), and the proportion of unchanged tracer [18F]Florbetaben was determined by HPLC analysis. Plasma metabolite profiles were investigated following intravenous administration of 300 MBq (±60 MBq) of [18F]Florbetaben to both, patients with AD and healthy controls (HCs), and various methods for processing the blood samples were evaluated. Addition of acetonitrile to plasma samples (obtained from whole blood by centrifugation) and precipitation of proteins resulted in a recovery of more than 90% of the initial radioactivity in the supernatants. High Performance Liquid Chromatography using a polymer-based column (PRP-1) in conjunction with gradient elution was found to be a suitable method of metabolite analysis of [18F]Florbetaben. HPLC analyses indicated that [18F]Florbetaben is rapidly metabolized in vivo with an estimated initial half-life of about 6 min. A polar metabolite fraction, consisting presumably of more than one component, and (to a smaller extent) of the demethylated derivative of [18F]Florbetaben were time-dependently detected in plasma.  相似文献   

14.
14-3-3 proteins are abundant, intramolecular proteins that play a pivotal role in cellular signal transduction by interacting with phosphorylated ligands. In addition, they are molecular chaperones that prevent protein unfolding and aggregation under cellular stress conditions in a similar manner to the unrelated small heat-shock proteins. In vivo, amyloid β (Aβ) and α-synuclein (α-syn) form amyloid fibrils in Alzheimer’s and Parkinson’s diseases, respectively, a process that is intimately linked to the diseases’ progression. The 14-3-3ζ isoform potently inhibited in vitro fibril formation of the 40-amino acid form of Aβ (Aβ40) but had little effect on α-syn aggregation. Solution-phase NMR spectroscopy of 15N-labeled Aβ40 and A53T α-syn determined that unlabeled 14-3-3ζ interacted preferentially with hydrophobic regions of Aβ40 (L11-H21 and G29-V40) and α-syn (V3-K10 and V40-K60). In both proteins, these regions adopt β-strands within the core of the amyloid fibrils prepared in vitro as well as those isolated from the inclusions of diseased individuals. The interaction with 14-3-3ζ is transient and occurs at the early stages of the fibrillar aggregation pathway to maintain the native, monomeric, and unfolded structure of Aβ40 and α-syn. The N-terminal regions of α-syn interacting with 14-3-3ζ correspond with those that interact with other molecular chaperones as monitored by in-cell NMR spectroscopy.  相似文献   

15.
Alzheimer’s disease is understood to be caused by amyloid fibrils and oligomers formed by aggregated amyloid-β (Aβ) peptides. This review article presents molecular dynamics (MD) simulation studies of Aβ peptides and Aβ fragments on their aggregation, aggregation inhibition, amyloid fibril conformations in equilibrium, and disruption of the amyloid fibril by ultrasonic wave and infrared laser irradiation. In the aggregation of Aβ, a β-hairpin structure promotes the formation of intermolecular β-sheet structures. Aβ peptides tend to exist at hydrophilic/hydrophobic interfaces and form more β-hairpin structures than in bulk water. These facts are the reasons why the aggregation is accelerated at the interface. We also explain how polyphenols, which are attracting attention as aggregation inhibitors of Aβ peptides, interact with Aβ. An MD simulation study of the Aβ amyloid fibrils in equilibrium is also presented: the Aβ amyloid fibril has a different structure at one end from that at the other end. The amyloid fibrils can be destroyed by ultrasonic wave and infrared laser irradiation. The molecular mechanisms of these amyloid fibril disruptions are also explained, particularly focusing on the function of water molecules. Finally, we discuss the prospects for developing treatments for Alzheimer’s disease using MD simulations.  相似文献   

16.
6-l-[18F]Fluoro-m-tyrosine (6-l-[18F]FMT) represents a valuable alternative to 6-l-[18F]FDOPA which is conventionally used for the diagnosis and staging of Parkinson’s disease. However, clinical applications of 6-l-[18F]FMT have been limited by the paucity of practical production methods for its automated production. Herein we describe the practical preparation of 6-l-[18F]FMT using alcohol-enhanced Cu-mediated radiofluorination of Bpin-substituted chiral Ni(II) complex in the presence of non-basic Bu4ONTf using a volatile iPrOH/MeCN mixture as reaction solvent. A simple and fast radiolabeling procedure afforded the tracer in 20.0 ± 3.0% activity yield within 70 min. The developed method was directly implemented onto a modified TracerLab FX C Pro platform originally designed for 11C-labeling. This method enables an uncomplicated switch between 11C- and 18F-labeling. The simplicity of the developed procedure enables its easy adaptation to other commercially available remote-controlled synthesis units and paves the way for a widespread application of 6-l-[18F]FMT in the clinic.  相似文献   

17.
As degradation product of Antineoplaston A10 in vivo, phenylacetyl glutamine showed antitumor activities. According to literatures, we designed and radiosynthesized a phenylacetyl glutamine derivative, which was achieved under a mild reaction condition. Evaluations in vitro and in vivo were performed on tumor bearing mice. Excitingly, the radiochemical purity of (S)-2-((S)-2-(4-(3-fluoropropyl)benzamido)-3-phenylpropanamido)pentanedioic acid ([18F]FBPPA) was 98%, and besides the best radiochemical yield was up to 46%. T/Bl (Tumor/Blood) and T/M (Tumor/Muscle) ratios of [18F]FBPPA at 60 min post injection were 2.33 and 3.51. Meanwhile, it showed satisfied stability in vitro and in vivo, compared with 2-[18F]fluorodeoxyglucose ([18F]FDG). Although [18F]FBPPA deserved further studies to make optimizations on its structure, the results revealed it might become a potential PET imaging agent for detecting tumors.  相似文献   

18.
Fluorine-18 is the most utilized radioisotope in positron emission tomography (PET), but the wide application of fluorine-18 radiopharmaceuticals is hindered by its challenging labelling conditions. As such, many potentially important radiotracers remain underutilized. Herein, we describe the use of [18F]ethenesulfonyl fluoride (ESF) as a novel radiofluoride relay reagent that allows radiofluorination reactions to be performed in minimally equipped satellite nuclear medicine centres. [18F]ESF has a simple and reliable production route and can be stored on inert cartridges. The cartridges can then be shipped remotely and the trapped [18F]ESF can be liberated by simple solvent elution. We have tested 18 radiolabelling precursors, inclusive of model and clinically used structures, and most precursors have demonstrated comparable radiofluorination efficiencies to those obtained using a conventionally dried [18F]fluoride source.  相似文献   

19.
Alzheimer’s disease (AD) is the most common cause of dementia worldwide. Despite extensive research and targeting of the main molecular components of the disease, beta-amyloid (Aβ) and tau, there are currently no treatments that alter the progression of the disease. Here, we examine the effects of two specific kinase inhibitors for calcium/calmodulin-dependent protein kinase type 1D (CaMK1D) on Aβ-mediated toxicity, using mouse primary cortical neurons. Tau hyperphosphorylation and cell death were used as AD indicators. These specific inhibitors were found to prevent Aβ induced tau hyperphosphorylation in culture, but were not able to protect cells from Aβ induced toxicity. While inhibitors were able to alter AD pathology in cell culture, they were insufficient to prevent cell death. With further research and development, these inhibitors could contribute to a multi-drug strategy to combat AD.  相似文献   

20.
Paclitaxel (PTX) treatment efficacy varies in breast cancer, yet the underlying mechanism for variable response remains unclear. This study evaluates whether human epidermal growth factor receptor 2 (HER2) expression level utilizing advanced molecular positron emission tomography (PET) imaging is correlated with PTX treatment efficacy in preclinical mouse models of HER2+ breast cancer. HER2 positive (BT474, MDA-MB-361), or HER2 negative (MDA-MB-231) breast cancer cells were subcutaneously injected into athymic nude mice and PTX (15 mg/kg) was administrated. In vivo HER2 expression was quantified through [89Zr]-pertuzumab PET/CT imaging. PTX treatment response was quantified by [18F]-fluorodeoxyglucose ([18F]-FDG) PET/CT imaging. Spearman’s correlation, Kendall’s tau, Kolmogorov–Smirnov test, and ANOVA were used for statistical analysis. [89Zr]-pertuzumab mean standard uptake values (SUVmean) of BT474 tumors were 4.9 ± 1.5, MDA-MB-361 tumors were 1.4 ± 0.2, and MDA-MB-231 (HER2−) tumors were 1.1 ± 0.4. [18F]-FDG SUVmean changes were negatively correlated with [89Zr]-pertuzumab SUVmean (r = −0.5887, p = 0.0030). The baseline [18F]-FDG SUVmean was negatively correlated with initial [89Zr]-pertuzumab SUVmean (r = −0.6852, p = 0.0002). This study shows PTX treatment efficacy is positively correlated with HER2 expression level in human breast cancer mouse models. Molecular imaging provides a non-invasive approach to quantify biological interactions, which will help in identifying chemotherapy responders and potentially enhance clinical decision-making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号