首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
High-quality fluorescent probes based on carbon dots (CDs) have promising applications in many fields owing to their good stability, low toxicity, high quantum yield, and low raw material price. The fluorine- and nitrogen-doped fluorescent CDs (NFCDs) with blue fluorescence was successfully synthesized using 3-aminophenol and 2,4-difluorobenzoic acid as the raw material by the hydrothermal method. The NFCDs as probe can be used to directly and indirectly detect Fe3+ (detection range: 0.1–150 μM and detection limit: 0.14 μM) and ascorbic acid (AA) (detection range: 10–80 μM and detection limit: 0.11 μM). The NFCDs-based probe shows exceptional selectivity and strong anti-interference for Fe3+ and ascorbic acid (AA). In addition, we examined the response of NFCDs to Fe3+ and AA in living cells, which showed that the timely use of AA can reduce the effects of iron poisoning. This has important biological significance. This means that using NFCDs as fluorescent probes is beneficial for Fe3+ and AA detection and observing their dynamic changes in living cells. Thus, this work may contribute to the study of Fe3+- and AA-related diseases.  相似文献   

2.
A facile and eco-friendly approach to prepare nitrogen(N)- and sulfur(S)-doped carbon dots (CDs) by one step microwave-assisted pyrolysis of the precursors with dl-malic acid as carbon source, ethanolamine and ethane-sulfonic acid as N and S dopants, respectively, was reported. Through the extensive investigation on morphology, chemical structures and optical properties of the carbon dots, it was found that the obtained CDs exhibited good luminescence stability, high resistance to photo bleaching and favorite solubility. Compared with undoped CDs, adding the N or S dopant could give rise to a slightly smaller particle size and a long fluorescence lifetime of CDs. Moreover, the optimal N-CDs was successfully employed as good multicolor cell imaging probes due to its fine dispersion in water, excitation-dependent emission, excellent biocompatibility and low toxicity. Besides, such N-CDs showed a wide detection range and excellent accuracy as fluorescent probe for Fe3+ ions. This probe enabled the selective detection of Fe3+ ions with a linear range of 6.0–200 μM and a limit of detection of 0.80 μM.  相似文献   

3.
Nitrogen and sulfur co-doped carbon dots (NS-CDs) were synthesized by one-step solvothermal method using oleic acid as the medium, ʟ-cystine and citric acid monohydrate as precursors. Based on the “on-off-on” fluorescence quenching mode, a novel method was established for determination of both Fe3+ and ascorbic acid. The synthesized NS-CDs can be employed as fluorescence chemical sensors for the direct determination of free iron in the aqueous phase and indirect determination of the ascorbic acid contents of vitamin C tablets with linear ranges of 0–10 μM (n = 3) and 0–30 μM (n = 3), and detection limits of 36.6 and 102.5 nM, respectively. These results demonstrate that the proposed method exhibits good selectivity and linearity.  相似文献   

4.
Glassy carbon electrodes were coated with films of poly(glutamic acid) (PG), and the modified electrode proved to be very effective in the oxidation of caffeic acid. The performance of the film was also tested with ascorbic acid, coumaric acid, ferulic acid, sinapic acid and chlorogenic acid. At pH 5.6, all the hydroxycinnamic acids yield a higher peak current intensity when oxidized after incorporation in the PG-modified electrode, and only the oxidation of ascorbic acid exhibits overpotential reduction. At pH 3.5 only caffeic and chlorogenic acid are incorporated in the modified electrode and exhibit a well-defined oxidation wave at +0.51 V and +0.48 V, which is the base for their determination. Linear calibration graphs were obtained from 9 × 10−6 mol L−1 to 4 × 10−5 mol L−1 caffeic acid by linear voltammetric scan and from 4 × 10−6 mol L−1 to 3 × 10−5 mol L−1 by square wave voltammetric scan. The method was successfully applied to the determination of caffeic acid in red wine samples without interference from other hydroxycinnamic acids or ascorbic acid.  相似文献   

5.
In this study, C-dots were facilely synthesized via microwave irradiation using citric acid and ethylenediamine as carbon precursors. The fluorescence emissions of the C-dots could be selectively quenched by Fe3+, and the degree of quenching was linearly related to the concentrations of Fe3+ presented. This phenomenon was utilized to develop a sensitive fluorescence assay for Fe3+ detection with broad linear range (0–250, 250–1200 μmol/L) and low detection limit (1.68 μmol/L). Most importantly, the assay demonstrated high reliability towards samples in deionized water, tap water and lake water, which should find potential applications for Fe3+ monitoring in complicated environments.  相似文献   

6.
This study established a ferric ion (Fe3+) detection method as a result of the fluorescence quenching effect of Fe3+ on carbon dots (CDs). Specifically, we proposed, a green microwave synthesis route towards fluorescent CDs that requires only the brewer’s spent grain as starting materials. Transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectra and X-ray photoelectron spectroscopy were performed to investigate the CDs characteristic: morphology, size distribution, functional groups, and composition, respectively. The experimental results, which were run under optimal experimental conditions, indicated that the fluorescence intensity and concentration of Fe3+ were within the desired linear range (0.3–7 μM). The detection limit of this assay towards Fe3+ was 95 nM. The proposed method showed significant selectivity with respect to interfering ions. We evaluated the potential application of this method with tap water, lake water and fetal bovine serum as real samples. Additionally, the CDs could be served as superior bioimaging probes in Hela cells as a result of their excellent optical stability and good biocompatibility. In a word, the present study provides a new idea for CDs derived from the waste of agricultural products for detecting food or environmental contaminants and cell imaging.  相似文献   

7.
Here, based on self-assembly of carbon quantum dots (CDs), an innovative method to prepare nanomaterials under the action of a metal catalyst was presented. CDs were synthesized by a one-step hydrothermal method with citric acid (CA) as the carbon source, ethylenediamine (EDA) as the passivator and FeSO4•7H2O as the pre-catalyst. In the experiment, it was found that the nano-carbon films with a graphene-like structure were formed on the surface of the solution. The structure of the films was studied by high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FT-IR), etc. The results demonstrated that the films were formed by the self-assembly of CDs under the action of the gas–liquid interface template and the metal catalyst. Meanwhile, the electrochemical performance of the films was evaluated by linear cyclic voltammetry (CV) and galvanostatic charge discharge (GOD) tests. In addition, the bulk solution could be further reacted and self-assembled by reflux to form a bifunctional magnetic–fluorescent composite material. Characterizations such as X-ray diffractometer (XRD), fluorescence spectra (FL), vibrating sample magnetometer (VSM), etc. revealed that it was a composite of superparamagnetic γ-Fe2O3 and CDs. The results showed that self-assembly of CDs is a novel and effective method for preparing new carbon nanomaterials.  相似文献   

8.
Maki T  Soh N  Nakano K  Imato T 《Talanta》2011,85(4):1730-1733
A simple and sensitive flow injection fluorometric method for the determination of ascorbic acid is described. Perylenebisimide-linked nitroxide (PBILN) is used as a fluorescent reagent, which permits the selective determination of ascorbic acid. The fluorescence of the perylenebisimide moiety in PBILN is quenched by the nitroxide moiety, which is linked to the perylenebisimide. When a stream of a solution of ascorbic acid is merged with a stream of PBILN, the ascorbic acid reacts with the nitroxide moiety of PBILN to form hydroxylamine, and the fluorescence properties of the perylenebisimide moiety are recovered. As a result, a peak-shaped fluorescence signal is produced, which can be observed by a fluorescence detector located downstream. Under optimized conditions, a good linear relationship between the concentration of ascorbic acid and peak height in the concentration range from 0.5 to 10 μmol L−1 was found and the detection limit (S/N = 3) was 0.28 μmol L−1. The relative standard deviation for the determination of 4.0 μmol L−1 ascorbic acid samples was 1.0% (n = 5). The proposed method was applied to the determination of ascorbic acid in several soft drink beverages and the analytical results were in good agreement with those obtained using a conventional method.  相似文献   

9.
This study designed a “turn-off–on” fluorescence analysis method based on carbon quantum dots (CQDs) to detect metal ions and amino acids in real sample systems. CQDs were derived from green pomelo peel via a one-step hydrothermal process. The co-doped CQDs with N and S atoms imparted excellent optical properties (quantum yield = 17.31%). The prepared CQDs could be used as fluorescent “turn-off” probes to detect Fe3+ with a limit of detection of 0.086 µM, a linear detection range of 0.1–160 µM, and recovery of 83.47–106.53% in water samples. The quenched CQD fluorescence could be turned on after adding L-cysteine (L-Cys), which allowed detection of L-Cys with a detection limit of 0.34 µM and linear range of 0.4–85 µM. Recovery of L-Cys in amino acid beverage was 87.08–122.74%. Visual paper-based testing strips and cellulose/CQDs composite hydrogels could be also used to detect Fe3+ and L-Cys.  相似文献   

10.
以组氨酸功能化碳点为稳定剂水热合成His-CDs@NaTbF_4。所制备的NaTbF_4为六方相晶体,碳点以共价键方式包覆于NaTbF_4表面,粒子尺寸仅为4~6 nm。小尺寸和丰富亲水基团使复合材料易分散于水,形成的分散液具有良好的稳定性。碳点紫外-可见吸收光谱与NaTbF_4的荧光发射光谱有较大程度重叠,且距离极短,因此碳点和NaTbF_4的复合将导致荧光共振能量转移。与单独碳点相比,His-CDs@NaTbF_4的荧光强度增加超过7倍。His-CDs@NaTbF_4可与Cu~(2+)配位而产生明显的荧光猝灭。然而,猝灭的荧光可被组氨酸恢复。基于以上行为,建立了一种"开-关"型组氨酸荧光检测方法。当组氨酸浓度在1.0×10~(-6)~2.0×10~(-4)mol·L~(-1)之间,峰荧光强度随组氨酸浓度增加而线性增大。该方法检出限为3.8×10~(-7) mol·L~(-1),已成功应用于人体尿液中组氨酸检测和Hela细胞成像。  相似文献   

11.
A 1,4,7,10-tetraazacyclododecane (cyclen) variant bearing two thiosemicarbazone pendant groups has been prepared. The ligand forms complexes with Mn2+, Co2+ and Zn2+. X-ray crystallography of the Mn2+, Co2+ and Zn2+ complexes showed that the ligand provides a six-coordinate environment for the metal ions. The Mn2+ and Zn2+ complexes exist in the solid state as racemic mixtures of the Δ(δ,δ,δ,δ)/Λ(λ,λ,λ,λ) and Δ(λ,λ,λ,λ)/Λ(δ,δ,δ,δ) diastereomers, and the Co2+ complex exists as the Δ(δ,δ,δ,δ)/Λ(λ,λ,λ,λ) and Δ(λ,λ,λ,δ)/Λ(δ,δ,δ,λ) diastereomers. Density functional theory calculations indicated that the relative energies of the diastereomers are within 10 kJ mol−1. Magnetic susceptibility of the complexes indicated that both the Mn2+ and Co2+ ions are high spin. The ligand was radiolabelled with gallium-68, in the interest of developing new positron emission tomography imaging agents, which produced a single species in high radiochemical purity (>95%) at 90 °C for 10 min.  相似文献   

12.

In this study, kumquat was first time used for synthesizing carbon dot structures (CDs) with the hydrothermal method. These newly synthesized CDs was characterized structurally and optically. The ion sensor application of the new CDs was carried out using 20 different metal ions. It was observed that CDs have high selectivity only for Fe3+ ions among the metal ions studied. Detection limit for Fe3+ ions was calculated as 0.70 µM. The results showed that these new CDs are highly selective against Fe3+ ions and have a very short response time such as 0.5 min. The Fe3+ ions selectivity of CDs was tested on real (tap water) samples. The results exhibited that this new CDs, obtained with green synthesis from Kumquat fruit without using chemical agents in one-pot simple and economical process, can be used as fluorometric sensor for detection of Fe3+ ions with high selectivity and sensitivity, low detection limit and rapid response time.

  相似文献   

13.
In this report we reported a facile one-pot method for synthesis of water-soluble and stable fluorescent CuNCs at room temperature, in which branched polyethyleneimine (BPEI) served as capping scaffold and ascorbic acid as reducing agent. The prepared BPEI-CuNCs exhibited excellent properties such as good water-solubility, photostability and high stability toward high ionic strength. Based on the electron transfer induced fluorescence quenching mechanism, this fluorescence probe was used for the sensitive and selective determination of ferric ions (Fe3+) in aqueous solution. The limit of detection was 340 nM in the linear range of 0.5–1000 μM, which was lower than the maximum level of Fe3+ permitted in drinking water by the U.S. Environmental Protection Agency. The method was successfully applied to the detection of Fe3+ in tap water, Yellow River water and human urine samples with the quantitative spike recoveries ranging from 95.3% to 112.0%.  相似文献   

14.
The construction of novel fluorescent nanozymes is highly desirable for providing new strategies for nanozyme-based sensing systems. Herein, a novel ratiometric fluorescence sensing platform was constructed based on carbon dots (CDs) as both luminophores and nanozymes, which could realize the sensitive detection of hydrogen peroxide (H2O2). CDs with peroxidase-mimicking activity were prepared with a one-step hydrothermal method using L-histidine as an inexpensive precursor. CDs had bright blue fluorescence. Due to the pseudo-peroxidase activity, CDs catalyzed the oxidation of o-phenylenediamine (OPD) with H2O2 to generate 2,3-diaminophenolazine (DAP). The fluorescence resonance energy transfer (FRET) between CDs and DAP resulted in a decrease in the fluorescence of CDs and an increase in the fluorescence of DAP, leading to a ratiometric fluorescence system. The free radical trapping experiment was used to investigate the reactive oxygen radicals (ROS) in the catalytic process of CD nanozymes. The enzymatic parameters of CD nanozymes, including the Michaelis constant (Km) and the maximum initial reaction velocities (Vmax), were investigated. A good affinity for both OPD and H2O2 substrates was proven. Based on the FRET between CDs and OPD, a ratiometric fluorescence analysis of H2O2 was achieved and results ranged from 1 to 20 μM and 20 to 200 μM with a low limit of detection (LOD, 0.42 μM). The detection of H2O2 in milk was also achieved.  相似文献   

15.
Heteroatom doping has been proven as an efficient way to improve the fluorescent efficiency of carbon dots. Co-doping with heteroatoms may introduce more active sites to carbon dots, which would broaden applications of CDs in sensing. In this work, highly luminescent nitrogen and sulfur co-doped carbon dots (NSCDs) were synthesized through a facile one-step microwave assisted method by using citric acid and rubeanic acid as carbon, nitrogen, and sulfur sources. The well-isolated NSCDs not only exhibit an enhanced fluorescent efficiency with a relatively high quantum yield up to 17.6%, but also show potential use as a multi-sensing platform based on their fluorescence “on-off-on” and color changing behaviors. The NSCDs can be directly used for the selective determination of mercury cations without any functionalization. The detection limit is approximately calculated as 0.18 μM and linear range is 0–20 μM. The sensing mechanism is proposed as coordination reaction induced by oligomers upon the carbon core. Furthermore, in the presence of cyanide anions, the fluorescence shows linear recovery associated with the concentration of cyanide, indicating its potential usage for the detection of cyanide ion. The optimized pH range for such fluorescence “on-off-on” sensing system is investigated as pH 6–8, suggesting potential applications in bio-sensing and imaging area. In addition, by adding hydrosulfide anion to NSCDs@Hg2+ complex, a notable color change could be clearly observed due to the formation of fuscous HgS. In application, a handy test paper for direct and rapid detection of Hg2+ is manufactured for the evaluation of usage of NSCDs in the real circumstance.  相似文献   

16.
A fast and facile approach to synthesize highly nitrogen (N)-doped carbon dots (N-CDs) by microwave-assisted pyrolysis of chitosan, acetic acid and 1,2-ethylenediamine as the carbon source, condensation agent and N-dopant, respectively, is reported. The obtained N-CDs are fully characterized by elemental analysis, transmission electron microscopy, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction pattern, X-ray photoelectron spectroscopy, UV–vis absorption, and photoluminescence spectroscopy. Doping N heteroatoms benefits the generation of N-CDs with stronger fluorescence emission. As the emission of N-CDs is efficiently quenched by Fe3+, the as-prepared N-CDs are employed as a highly sensitive and selective probe for Fe3+ detection. The detection limit can reach as low as 10 ppb, and the linear range is 0.010–1.8 ppm Fe3+. The as-synthesized N-CDs have been successfully applied for cell imaging and detecting Fe3+ in biosystem.  相似文献   

17.
The fabrication of efficient fluorescent probes that possess an excellent sensitivity and selectivity for uric acid is highly desirable and challenging. In this study, composites of silver nanoparticles (AgNPs) wrapped with nitrogen-doped carbon quantum dots (N-CQDs) were synthesised utilising N-CQDs as the reducing and stabilising agents in a single reaction with AgNO3. The morphology and structure, absorption properties, functional groups, and fluorescence properties were characterised by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, ultraviolet spectroscopy, fluorescence spectroscopy, and X-ray diffraction spectroscopy. In addition, we developed a novel method based on AgNPs/N-CQDs for the detection of uric acid using the enzymatic reaction of uric acid oxidase. The fluorescence enhancement of the AgNPs/N-CQDs composite was linear (R2 = 0.9971) in the range of 2.0–60 μmol/L, and gave a detection limit of 0.53 μmol/L. Trace uric acid was successfully determined in real serum samples from the serum of 10 healthy candidates and 10 gout patients, and the results were consistent with those recorded by Qianxinan Prefecture People’s Hospital. These results indicate that the developed AgNP/N-CQD system can provide a universal platform for detecting the multispecies ratio fluorescence of H2O2 generation in other biological systems.  相似文献   

18.
In this study, we developed a novel cerium/ascorbic acid/iodine active species to design a redox flow battery (RFB), in which the cerium nitrate hexahydrate [Ce(NO3)3·6H2O] was used as a positive Ce3+/Ce4+ ion pair, and the potassium iodate (KIO3) containing ascorbic acid was used as a negative I2/I ion pair. In order to improve the electrochemical activity and to avoid cross-contamination of the redox pair ions, the electroless plating and sol–gel method were applied to modify the carbon paper electrode and the Nafion 117 membrane. The electrocatalytic and electrochemical properties of the composite electrode using methanesulfonic acid as a supporting electrolyte were assessed using the cyclic voltammetry (CV) test. The results showed that the Ce (III)/Ce (IV) active species presented a symmetric oxidation/reduction current ratio (1.09) on the C–TiO2–PdO composite electrode. Adding a constant amount of ascorbic acid to the iodine solution led to a good reversible oxidation/reduction reaction. Therefore, a novel Ce/ascorbic acid/I RFB was developed with C–TiO2–PdO composite electrodes and modified Nafion 117–SiO2–SO3H membrane using the staggered-type flow channel, of which the energy efficiency (EE%) can reach about 72%. The Ce/ascorbic acid/I active species can greatly reduce the electrolyte cost compared to the all-vanadium redox flow battery system, and it therefore has greater development potential.  相似文献   

19.
The poor water solubility, large particle size, and low accessibility of cellulose, the most abundant bioresource, have restricted its generalization to carbon dots (CDs). Herein, nitrogen and sulfur co-doped fluorescent carbon dots (N, S-CDs) were hydrothermally synthesized using cellulose nanocrystals (CNC) as a carbon precursor, exhibiting a small particle size and excellent aqueous dispersion. Thiourea was selected as a nitrogen and sulfur dopant to introduce abundant fluorescent functional groups into N, S-CDs. The resulting N, S-CDs exhibited nanoscale size (6.2 nm), abundant functional groups, bright blue fluorescence, high quantum yield (QY = 27.4%), and high overall yield (16.2%). The excellent optical properties of N, S-CDs endowed it to potentially display a highly sensitive fluorescence “turn off” response to rutin. The fluorescence response for rutin allowed a wide linear range of 0–40 mg·L−1, with a limit of detection (LOD) of 0.02 μM, which revealed the potential of N, S-CDs as a rapid and simple sensing platform for rutin detection. In addition, the sustainable and large-scale production of the N, S-CDs in this study paves the way for the successful high-value utilization of cellulose.  相似文献   

20.
In this paper, a flow-injection chemiluminescence system is proposed for simultaneous determination of ascorbic acid and L-cysteine with partial least squares calibration. This method is based on the fact that both AA and Cys can quantitatively reduce Fe3+ to Fe2+, and that the reaction rates of AA and Cys with Fe3+ are different. The reduced product Fe2+ was detected with the luminol-Fe2+–O2 CL system. The CL intensity was measured and recorded at different reaction times of Fe3+ with AA and Cys, and the obtained data was processed by the chemometric approach of partial least squares. The experimental calibration set was composed of 16 sample solutions using an orthogonal calibration design for two component mixtures. The calibration curve was linear over the concentration range of 0.066µgmL–1 and 0.440µgmL–1 for ascorbic acid and L-cysteine, respectively. The proposed method was successfully applied to the simultaneous determination of both analytes in pharmaceutical formulations and human urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号