首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
环氧氯丙烷(ECH)与二氧化碳(CO2)的共聚反应产物具有可修饰的C―Cl键,是实现聚碳酸酯功能化的有效途径,然而该反应一直受制于较长的诱导期.本文提出了一种酸酐诱导增强共聚反应活性的策略,即在CO2/ECH共聚体系中引入微量环状酸酐以缩短诱导期,提高反应活性.以锌钴氰化络合物(DMC)催化剂为例,在CO2/ECH共聚体系中仅加入0.1 mol%的不同种类环状酸酐,ECH转化率可达到23.6%~83.6%(40℃,24 h),相比于未添加酸酐体系的低转化率(2.6%),反应活性显著增强.尤其是5-降冰片烯-2,3-二羧酸酐诱导的CO2/ECH共聚体系显示出最高的活性增强效应,在28 h内ECH转化率可达98.8%,催化效率为430 g polymer/g cat.,并保持91.3 wt%的聚合物选择性,进而制备出碳酸酯单元含量为68.2%、分子量为16.7 kg/mol的CO2基聚碳酸酯.进一步采用在线红外等光谱分析技术,证实环状酸酐优先与ECH发生共聚反应生成聚酯活性种是缩短...  相似文献   

2.
二氧化碳(CO2)光催化还原技术因兼具解决能源和全球变暖问题的潜力而受到关注。金属铁络合物作为分子型催化剂,具有价格低廉、量子效率高、结构可调控和选择性好等优势,表现出优异的CO2光催化还原性能,成为CO2光催化还原领域的研究热点。本文综述了近年来基于金属铁络合物光催化二氧化碳还原研究进展。介绍了铁金属络合物(如:铁卟啉、铁多吡啶、五齿铁配合物)CO2均相光催化还原体系,总结了体系的构成以及作用机理等,着重关注了体系的催化效率和产物的选择性。此外,综述了以半导体纳米材料/量子点作为光敏剂,金属铁络合物作为催化剂的非均相催化体系的研究进展。最后,对该领域未来的研究方向和所面临的挑战做出展望。  相似文献   

3.
太阳能驱动二氧化碳光催化还原为CH4是缓解全球变暖和能源危机的有效策略,然而,光催化效率较低以及产物选择性差,严重阻碍其大规模商业化应用。探究光催化CO2还原反应机理对解决以上问题有重要参考意义,因此本文对光催化CO2还原为C1产物的基本原理及路径进行阐述,主要综述提高CO2光还原效率以及CH4选择性的方法,如构建异质结、设计结构缺陷、引入单原子催化剂以及其他方法,最后指出CO2光还原CH4面临的挑战和发展前景。  相似文献   

4.
CO2电化学还原反应可以将CO2转化为燃料并同时实现再生能源的有效存储. 目前纳米结构的多相催化剂已经广泛应用于此反应,其中碳负载钯纳米粒子(Pd/C)表现出优异的CO2电化学还原性能. 本工作研究了钯载量对于Pd/C催化剂结构以及其催化CO2还原生成CO反应活性和选择性的影响. 不同载量的Pd/C催化剂通过液相还原方法制备,钯纳米粒子均匀地分散在碳载体上,载量并没有明显改变对纳米粒子的粒径. 在优选的电解质(0.1 mol·L-1 KHCO3)中,CO法拉第效率与载量呈现火山型曲线关系,-0.89 V时载量为20wt%的Pd/C催化剂达到最高的CO法拉第效率(91.2%). 生成CO的几何电流密度随着钯载量的增加而增加,但CO转换频率具有相反的趋势,载量为2.5wt%的Pd/C催化剂具有最高的转换频率. 这种载量对CO2电化学还原反应活性和选择性的影响主要由活性位的数量、反应动力学、中间物种的稳定性以及反应物、中间物种和产物的传质过程等共同决定.  相似文献   

5.
将CO2作为可利用的碳资源催化转化为高附加值化学品或液体燃料对于节能减排和碳资源的循环利用具有重要意义。由于CO2分子的化学惰性及高的C–C键耦合能垒,导致CO2的选择性活化及可控转化极具挑战。近年来,随着研究的不断深入及串联催化体系的构建,世界各国研究者在CO2催化加氢制备高附加值烃类方面取得了突破性的研究进展。然而,在串联催化过程中,Fe基催化剂或金属氧化物与分子筛间的协同匹配、活性组分间的组装方式、分子筛的孔道结构及酸性、以及反应条件及气氛均对CO2加氢的产物分布影响显著。有鉴于此,本综述针对CO2加氢制备高附加值烃(低碳烯烃、异构烷烃、汽油及芳烃)的串联催化反应体系,重点介绍串联催化剂上影响CO2活化、转化及目标产物生成的关键因素以及串联催化剂的稳定性,并在此基础上对CO2催化加氢的未来和前景进行总结和展望。  相似文献   

6.
CO2加氢对于CO2转化制备高附加值化学品和燃料以实现二氧化碳利用及能源储存至关重要。CO2加氢包括甲烷化、逆水煤气变换、甲醇化和CO2直接费托合成等。碳化钼,尤其是其二维材料,由于其低成本和良好的性能而备受关注。在CO2加氢反应中,由于碳的渗入,导致晶格膨胀以及价电子增加,碳化钼基催化剂展现出了类似于贵金属催化剂的性质。碳化钼可以通过程序升温渗碳法、选择性蚀刻法、机械合金合成法、化学气相沉积法、原位热渗碳法以及溶液相合成法等来制备。到目前为止,学者已经对基于碳化钼的材料的CO2转化进行大量研究,这些材料具有良好的CO2转化活性和对目标产物的选择性。碳化钼材料的催化性能可以通过调节碳化钼中的C/Mo比、在碳化钼与负载金属之间建立强的金属-载体相互作用以及调整材料的界面结构来实现。然而,基于碳化钼的热催化CO2转化仍处于初级阶段。本文综述基于碳化钼的热催化CO2加氢制备高附加值化学品和燃料的研...  相似文献   

7.
采用水热还原法制备出具有金属Ni和K2MoO4紧密接触的合成低碳醇用非硫化态K-Ni-Mo基催化剂。通过XRD、N2物理吸附-脱附、H2-TPR、HR-TEM、SEM-EDS、XPS、H2-TPD、CO-TPD和CO2-TPD等手段对所合成催化剂进行了分析表征。研究结果显示,向Ni-Mo基催化剂中引入K可产生K2MoO4相,同时伴随NiMoO4相含量的降低,显著提升了K-Ni-Mo基催化剂上CO非解离吸附活化能力,从而促进了CO转化和醇类产物的形成。此外,同时增加的催化剂表面碱性可提高催化剂上碱性羟基基团数量,进而有效降低烃类选择性,表现出优异的合成低碳醇性能。其中,K0.4-Ni-Mo基催化剂具有最优的催化性能,在5 MPa、240℃、空速5000 h-1的反应条件下,CO转化率达到19.6%,总醇选择性57.8%,其中,总醇中C2+<...  相似文献   

8.
苯氨基甲酸甲酯(MPC)是合成二苯甲烷二异氰酸酯(MDI)的关键原料。以二氧化碳(CO2)及其等价物或衍生物作为碳源合成MPC代表了绿色和可持续的精细化学品合成方法。基于该领域研究,概述了基于CO2转化合成苯氨基甲酸甲酯的研究方法进展。合成路线包括研究较多的CO2等价物(尿素或苯基脲)醇解法,碳酸二甲酯(DMC)氨解法以及二苯基脲和DMC耦合反应法。另外,最理想的合成方法是近几年发展的苯胺、CO2和甲醇三组分“一锅”反应法,以及使用脂肪胺类原料构建氨基甲酸烷基酯类化合物,其代表了最有前景的CO2利用途径之一。详细探讨了反应机理和催化剂选择等问题。研究进展将为进一步提升绿色催化和可持续化学过程效率提供重要理论支持。  相似文献   

9.
CO2催化加氢被认为是生产高附加值化学品和燃料最实用的途径之一。然而由于其化学惰性、C–C键偶联过程的高能垒和诸多的竞争反应,因此,开发高效的催化剂以促进CO2的活化并转化为多样的化工产物显得至关重要。近年来,氧化铟因具有丰富的氧缺陷位点,在催化CO2加氢方面对甲醇的高选择性以及对CO2转化的高活性引起了人们的广泛关注。本工作主要对In2O3的结构及其与氧化物负载或金属元素掺杂的复合催化剂用于催化CO2加氢制备甲醇的催化性能进行了综述。探讨了In2O3与不同类型的分子筛的接近度和元素迁移在CO2加氢制烃类产物中的影响。并对In2O3基催化剂在CO2选择性加氢方面存在的挑战和发展方向进行了总结。  相似文献   

10.
氧化异丁烯(IBO)是石化行业重要C4产品异丁烯的衍生物.将IBO与二氧化碳(CO2)共聚制备脂肪族聚碳酸酯,是一条高附加值利用异丁烯和CO2的可行途径,但迄今仅有零星的研究报道.本文采用非均相的锌-钴双金属氰化络合物(Zn-Co DMCC)在40℃的反应温度下催化IBO与CO2共聚,催化效率高达1.6 kg共聚物/g催化剂,所得产物聚碳酸亚丁酯(PIBC)具有全交替序列结构,区域规整度高达95%,数均分子量达18.6 kDa.特别的,PIBC为结晶性高分子,熔点高达93.7℃,初始热分解温度仅为145℃.PIBC的拉伸强度达4.4 MPa,断裂伸长率达350%,因此PIBC有望应用于牺牲型粘接剂.另外,Zn-Co DMCC也能催化CO2、IBO与马来酸酐共聚,得到了具有全交替结构的三元共聚物.研究结果为异丁烯的应用开拓了一条可持续发展的新路径.  相似文献   

11.
以超临界CO2为聚合介质, 硫代苯甲酰基特丁基硫酯(TTBT)为链转移剂, 通过可逆加成-断裂链转移(RAFT)聚合制备了聚丙烯酰胺多面体低聚倍半硅氧烷(PAMPOSS)均聚物及其与甲基丙烯酸甲酯(PMMA)的嵌段共聚物(PAMPOSS-b-PMMA). 对产物结构组成和分子量及其分布进行表征. 结果表明, 在TTBT的控制下, POSS的均聚物和嵌段共聚物具有高分子量及窄分子量分布. 含POSS单体在超临界CO2中为均相聚合, POSS聚合物的结晶性在一定程度上影响其在超临界CO2中溶解性.  相似文献   

12.
聚四氢呋喃三元醇的合成及表征   总被引:1,自引:0,他引:1  
合成了一种新的三元引发剂[C2H5C(CH2OCH2CH2CO+ClO4-)3],并用于制备聚四氢呋喃三元醇.用1HNMR,FTIR和GPC法对聚合物的结构进行了表征.结果表明,产物中环状齐聚物的含量极低.对聚合物水解产物的分子量及分子量分布测定结果表明,产物为预期的三元醇,聚合反应过程中链转移可以忽略,聚合物的分子量可控.  相似文献   

13.
电催化二氧化碳还原反应(CO2RR)可以将二氧化碳转化为具有高经济价值的碳氢化合物,被认为是实现碳中和并缓解能源危机的一种有潜力的技术.铜(Cu)作为一种最有应用前景的非贵金属催化剂之一,表现出较高的催化CO2RR转化为多碳产物(C2+)的活性.然而,电催化CO2还原成C2+产物涉及一个动力学过程缓慢的C-C偶联反应,这导致C2+产物的选择性较低,电流密度低,阻碍了其在工业电解槽中的实际应用.同时,CO2RR产物的选择性不仅取决于热力学速率决定步骤,还取决于传质控制动力学.CO2RR发生在固-气-液三相反应界面,气-液的平衡扩散可以有效抑制析氢竞争反应,进而提高CO2RR的反应效率.本文设计合成了一种富晶界的Cu纳米带催化剂,并构建了气-液平衡扩散的电极结构,用于高效电催化二氧化碳还原制备乙烯(C2H4).以一种碱式碳酸铜(Cu2  相似文献   

14.
赵洋  王笑颜  张崇  蒋加兴 《化学学报》2015,73(6):634-640
共轭微孔聚合物由于其在气体吸附与分离、非均相催化和光电子等领域的巨大应用前景而广受关注. 本文以四苯基乙烯为基本构筑单元, 通过Sonogashira-Hagihara偶联反应制备了3种共轭微孔聚合物新材料, 研究了结构组成和构建模块对制备聚合物孔性能和气体吸附性能的影响. 氮气吸附测试结果表明, 由1,1,2,2-四炔四苯基乙烯自聚合制备的TPE-CMP1具有较大的比表面积, 为1096 m2·g-1. 在1.13 bar/273 K条件下, TPE-CMP1的CO2吸附能力为2.36 mmol·g-1; 在1.13 bar/77.3 K条件下, TPE-CMP1对H2的吸附能力为1.35 wt%. 另外, 制备的共轭微孔聚合物展示出较高的CO2/N2选择性吸附值. 由于这类多孔聚合物材料具有合成方法简单、优良的物理化学及热稳定性、高的比表面积和CO2吸附性能, 因此将在气体吸附与分离方面具有潜在的应用前景.  相似文献   

15.
随着二氧化碳(CO2)排放量的不断增加, 全球变暖和气候变化的加剧对人类的生存环境产生了巨大的影响. CO2作为廉价、 可再生的碳氧资源, 将其转化为高附加值化学品是绿色化学及能源领域的重要研究课题之一, 受到广泛关注. Pd基催化剂由于具有优异的加氢能力以及良好的抗烧结、 抗毒化性能, 作为CO2催化转化最有前途的催化剂被广泛应用和研究. 本文主要对Pd基催化剂上CO2加氢制备HCOOH, CO, CH4和甲醇等小分子能源化合物的研究进展进行综合评述, 重点关注Pd基催化剂上CO2分子的吸附/活化位点、 催化剂的金属-载体强相互作用及表界面组成等对催化剂活性和选择性的影响以及催化反应机理.  相似文献   

16.
受水煤气变换反应(或其逆反应)的干预,CO(或CO2)加氢反应制烃类或醇类化合物经常会遭遇较高的CO2(或CO)选择性,而目标产物烃和醇的选择性往往较低,这使得对相关反应过程的评估显得非常混乱。为此,本工作对水煤气变换反应作用下的CO、CO2及其混合物的加氢转化制烃(以乙烯为例)和醇(以甲醇为例)反应进行了详细的热力学研究。结果表明,对于CO(或CO2)加氢反应,水煤气变换(或逆水煤气变换)反应作为连接CO和CO2的连通器,虽然会给CO(或CO2)的平衡转化率带来很大的改变并生成大量的CO2(或CO),但其对目标醇和烃产物的碳基平衡收率影响相对较小。CO加氢反应的烃醇产物的碳基平衡收率比CO2加氢反应的高,而CO和CO2混合物加氢的烃醇产物的总碳基平衡收率位于两者之间。对于CO和CO2混合物加氢,尽管CO或CO2的平衡转化率随原料组成的不同有较大幅...  相似文献   

17.
在以H2O为质子源的光催化二氧化碳还原反应(CO2RR)过程中,光解H2O产氢气(H2)被认为是一个竞争反应.因此,光催化CO2RR过程需要抑制H2的产生,以提高碳氢产物的选择性和产率.以CO2和H2为反应物的逆水气变换反应(RWGS)是常见的CO2加氢反应,在较高的温度和催化剂作用下生成CO和H2O.目前,光催化CO2RR研究主要聚焦于产物的选择性,而有关光解H2O产生的还原性气体H2在光热效应的促进下成为CO2RR中新的质子源研究较少.光热催化是一种新的高效催化反应方式,在反应过程中需要光照和加热.光照能够促进半导体光生载流子的激发,热效应则能降低反应物分子的活化势垒,并能够促进中间产物的表面迁移以及生成物的脱附.利用光热催化热力学和动力学上的有利条件,为以H2  相似文献   

18.
电催化CO2制备高附加值的化学品是解决当前碳排放问题的可行技术路线之一.其中,合成醇类化合物因具有广泛用途和高价值而备受关注.在电催化CO2还原合成多碳醇反应中,关键中间体*CH2CHO容易发生热力学有利的脱氧反应而生成C2H4,降低了醇类产物的选择性.由于电催化CO2还原是一个表面结构敏感的反应,因此可以通过设计Cu基催化剂的特定表面结构,实现对反应路径的有效调节,从而提升醇类产物的选择性.本课题组前期通过密度泛函理论(DFT)计算和主成分分析法等对Cu基催化剂的构效关系进行解析,说明配位不饱和的台阶位点有望高效地促进醇类产物的生成.本文进一步从实验角度,证明了配位不饱和的台阶位点是生成醇类产物的活性位点.本文采用CO分子作为还原剂制备了CuO衍生的金属Cu催化剂(COD-Cu),利用CO分子对Cu表面的重构作用,获得了具有丰富台阶位点的Cu催化剂.而通过H2还原制备的金属Cu催化剂(HOD-Cu)对照样表面则多为平面位点.X射线衍射和原位拉曼光谱结果表明, CuO前驱体经过...  相似文献   

19.
CO2的化学转化作为碳减排的有效手段受到了广泛关注,近年来,通过热催化工艺将CO2加氢转化为乙醇已经取得了突破性的进展,但仍然存在乙醇选择性及产率低、副产物较多等问题。本工作对热催化CO2加氢制取乙醇的研究进展进行了综述,主要评述了以分子筛、金属氧化物、钙钛矿、二氧化硅、有机框架及金属碳化物等为载体的催化剂应用,分析了不同金属间的协同作用对CO2转化过程的影响以及各类活性物种的介入对于CO2加氢制取乙醇反应的促进作用,总结出能够有效促进C–C键偶联以及CO2吸附和活化的催化剂体系。在此基础上分析了影响CO2加氢制取乙醇的各种因素,并对反应机理进行了讨论。该综述为CO2加氢制备乙醇的催化剂设计、合成工艺条件优化以及催化机理的探究提供参考。  相似文献   

20.
通过电化学手段将CO2转化为高附加值的化学品和燃料是缓解能源短缺与环境危机的一种重要方法.在电还原过程制备的所有含碳产物中, CH4拥有最高的热值(56 k J/g),是最重要的化学键能储备载体之一.本文以先前报道的反应机理为出发点,从催化剂设计策略的角度总结了CO2电还原制CH4的最新研究进展.催化剂设计策略包括亚纳米催化位点构筑、界面调控、原位结构演变以及串联催化剂构筑.基于已有的理论预测与实验结果,获取对制备CH4反应机理更深层次的理解,进而反馈指导高效催化剂的设计合成.亚纳米催化位点构筑可有效抑制反应过程中的C-C偶联,进而提升CO2电还原制CH4的催化性能.界面调控利用活性相与衬底间的协同作用,可优化含氧中间体的结合能,确保反应按预期路径进行.原位结构演变可构建热力学稳定的活性相,进而增强CO2电还原制CH4的催化活性.串联催化通过构筑多种活性位点将总包反应分为不同阶段,可有效打破...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号