首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 357 毫秒
1.
Atmospheric pressure chemical vapor synthesis was used to produce copper nanoparticle composites in an amorphous silicon dioxide, i.e., either copper nanoparticles coated with amorphous silicon dioxide or copper nanoparticles embedded in amorphous silicon dioxide matrix. Synthesized metal–organic copper(I) complex was used as a precursor that provided well-defined ratio (1:2) of copper and silicon. The thermal decomposition of the Cu(I) complex molecule leads to homogenous nucleation and formation of copper nanoparticles which are subsequently coated with Si/SiO2 in the gas phase. The decomposition was greatly enhanced when reductive atmosphere, i.e., H2/N2 10 v% were used instead of pure nitrogen. A narrow size distribution with the geometric mean diameter of the particle agglomerates around 30 nm was observed while the primary size of the copper core particles was around 5 nm.  相似文献   

2.
The nanoparticles containing thermosensitive and magnetic properties were investigated for their potential use as a novel drug carrier for targeted and controlled release drug delivery system. These thermosensitive and magnetic nanoparticles were prepared by grafting thermosensitive poly (N-isopropylacrylamide) (PNIPAM) on the surface of silica (SiO2)-coated Fe3O4 nanoparticles with the particle size of 18.8 ± 1.6 nm. Adsorption and desorption behavior of bovine serum albumin (BSA) on the surface of PNIPAM-grafted SiO2/Fe3O4 nanoparticles was studied, and the results indicated that these nanoparticles were able to absorb protein at temperature above the lower critical solution temperature (LCST) and to be desorbed below the LCST. Cytotoxicity studies conducted on Chinese hamster ovary (CHO-K1) cells using methyl tetrazolium (MTT) assays revealed that cell viability of 1 mg/mL PNIPAM-grafted nanoparticles was slightly decreased after 24 h of incubation as compared to the lower concentration of nanoparticles. Furthermore, the concentration of 0.5 mg/mL PNIPAM-grafted nanoparticles was totally biocompatible for 48 h, but had low cytotoxicity after 72 h of incubation. These PNIPAM-grafted nanoparticles did not induce morphological change in their cellularity after exposure for 24 and 108 h. These results demonstrate that PNIPAM-grafted nanoparticles are biocompatible and have potential use as drug carriers.  相似文献   

3.
Biogenic silica nanoparticles were synthesized using rice husks (RHs) as the raw material via controlled pyrolysis. The characterization results showed that the morphology of the synthesized silica was highly related to the pretreatment of RHs and the pyrolysis conditions. Particularly, potassium cations in RHs were found to catalyze the melting of silica, during which the amorphous silica were converted to crystalline phase. Two hours of pyrolysis at 700 °C appeared to be ideal to synthesize silica nanoparticles with a diameter of ca. 20–30 nm. Higher temperature and longer duration of pyrolysis led to undesired melting of silica nanoparticles, while too low a temperature cannot effectively remove carbonous residues. Such amorphous silica nanoparticles with narrow size distribution and high purity are expected to replace silica gel and fumed silica for various applications.  相似文献   

4.
A method to prepare a core–shell structure consisting of a Pt metal core coated with a silica shell (Pt(in)SiO2) is described herein. A silica shell was grown on poly(vinylpyrrolidone) (PVP)-stabilized Pt nanoparticles 2–3 nm in size through hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) in a water/ethanol mixture with ammonia as a catalyst. This process requires precise control of the reaction conditions to avoid the formation of silica particles containing multiple Pt cores and core-free silica. The length of PVP molecules, water content, concentration of ammonia and Pt nanoparticles in solution were found to significantly influence the core–shell structure. By optimizing these parameters, it was possible to prepare core–shell particles each containing a single Pt nanoparticle with a silica layer coating approximately 10 nm thick.  相似文献   

5.
Obtaining small (<50 nm), monodispersed, well-separated, single iron oxide core–silica (SiO2) shell nanoparticles for biomedical applications is still a challenge. Preferably, they are synthesised by inverse microemulsion method. However, substantial amount of aggregated and multicore core–shell nanoparticles is the undesired outcome of the method. In this study, we report on the production of less than 50 nm overall size, monodispersed, free of necking, single core iron oxide–SiO2 shell nanoparticles with tuneable shell thickness by a carefully optimized inverse microemulsion method. The high degree of control over the process is achieved by understanding the mechanism of core–shell nanoparticles formation. By varying the reaction time and precursor concentration, the thickness of silica layer on the core nanoparticles can be finely adjusted from 5 to 13 nm. Residual reactions during the workup were inhibited by a combination of pH control with shock freezing and ultracentrifuging. These high-quality tuneable core–shell nanocomposite particles exhibit superparamagnetic character and sufficiently high magnetization with great potential for biomedical applications (e.g. MRI, cell separation and magnetically driven drug delivery systems) either as-prepared or by additional surface modification for improved biocompatibility.  相似文献   

6.
In the recent years, the potential applicability of magnetic nanoparticles (MNPs) has witnessed a significant increase in interest towards the medical field, in particular, towards the usage of novel nanoparticles in diagnostics and disease treatment, respectively. In a present study, cholesterol oxidase (ChOx) was covalently immobilized to magnetic nanoparticles of maghemite (γ-Fe2O3) and further functionalized by silica (SiO2) and amino-silane molecules. The activity of the bound enzyme was retained up to 60%, respectively. The binding of cholesterol oxidase was confirmed using FT-IR spectrophotometer. SEM analysis showed uniformly dispersed functional magnetic nanoparticles, which ranged in size from 22.5 to 50.8 nm, surrounded by amorphous silica. In this paper, the potential applications of chemically modified magnetic nanoparticles as carriers for cholesterol oxidase and other enzymes are discussed.  相似文献   

7.
We present a study on amorphous SiO/SiO2 superlattice performed by grazing-incidence small-angle X-ray scattering (GISAXS). Amorphous SiO/SiO2 superlattices were prepared by high-vacuum evaporation of 3 nm thin films of SiO and SiO2 (10 layers each) onto Si(1 0 0) substrate. After the deposition, samples were annealed at 1100 °C for 1 h in vacuum, yielding to Si nanocrystals formation. Using a Guinier approximation, the shape and the size of the crystals were obtained. The size of the growing nanoparticles in the direction perpendicular to the film surface is well controlled by the bilayer thickness. However, their size varies more significantly in the direction parallel to the film surface.  相似文献   

8.
In this paper, a simple synthesis method of small-size( about 50 nm in diameter), high magnetic and fluorescent bi-functional silica composite nanoparticles were developed, in which water-soluble Fe3O4 magnetic nanoparticlels (MNs) and CdTe quantum dots (QDs) were directly incorporated into a silica shell by reverse microemulsion method. The high luminescent QDs can be used as luminescent marker, while the high magnetic MNs allow the manipulation of the bi-functional silica composite nanoparticles by external magnetic field. Poly (dimethyldiallyl ammonium chloride) was used to balance the electrostatic repulsion between CdTe QDs and silica intermediates to enhance the fluorescence intensity of MNs-QDs/SiO2 composite nanoparticles. The optical property, magnetic property, size characterization of the bi-functional composite nanoparticles were studied by UV-Vis and PL emission spectra, VSM, TEM, SEM. The stabilities toward time, pH and ionic strength and the effect of MNs on the fluorescence properties of bi-functional silica composite nanoparticles were also studied in detail. By modifying the surface of MNs-QDs/SiO2 composite nanoparticles with amino and methylphosphonate groups, biologically functionalized and monodisperse MNs-QDs/SiO2composite nanoparticles can be obtained. In this work, bi-functional composite nanoparticles were conjugated with FITC labeled goat anti-rabbit IgG, to generate novel fluorescent-magnetic-biotargeting tri-functional composite nanoparticles, which can be used in a number of biomedical application.  相似文献   

9.
Manganese nanoparticles were grown in silica glass and silica film on silicon substrate by annealing of the sol-gel prepared porous silicate matrices doped with manganese nitrate. Annealing of doped porous silicate matrices was performed at various conditions that allowed to obtain the nanocomposite glasses with various content of metallic Mn. TEM of Mn/SiO2 glass indicates the bimodal size distribution of Mn nanoparticles with mean sizes of 10.5 nm and 21 nm. The absorption and photoluminescence spectra of Mn/SiO2 glasses were measured. In the absorption spectra at 300 nm (4.13 eV) we observed the band attributed to the surface plasmon resonance in Mn nanoparticles. The spectra proved the creation of Mn2+ and Mn3+ ions in silica glass as well. The absorption spectra of Mn/SiO2 glasses annealed in air prove the creation of manganese oxide Mn2O3. The measured reflection spectra of Mn/SiO2 film manifest at 240-310 nm the peculiarity attributed to surface plasmons in Mn nanoparticles.  相似文献   

10.
The use of fluorescent nanomaterials has gained great importance in the field of medical imaging. Many traditional imaging technologies have been reported utilizing dyes in the past. These methods face drawbacks due to non-specific accumulation and photobleaching of dyes. We studied the uptake and internalization of two different sized (30 nm and 100 nm) FITC labeled silica nanoparticles in Human umbilical vein endothelial cell line. These nanomaterials show high biocompatability and are highly photostable inside live cells for increased period of time in comparison to the dye alone. To our knowledge, we report for the first time the use of 30 nm fluorescent silica nanoparticles as efficient endothelial tags along with the well studied 100 nm particles. We also have emphasized the good photostability of these materials in live cells.  相似文献   

11.
This study proposes a novel and simple in-house design of a nanoparticle tracking analysis (NTA) device for the online characterization of nanoparticles in an aqueous solution. The particle size distribution of two sets of model nanoparticles, for example, transparent (SiO2) and opaque (TiO2) materials with respect to water as a dispersion medium could be successfully analyzed. Experiments are conducted using two different laser wavelengths of 632.8 (red) and 510 nm (green) and a range of concentrations. The accuracy of the green laser is larger compared to the red laser for all particle concentrations used. The measured average diameter using the presented in-house NTA setup is in the acceptable range compared to the electron microscopy data. The average diameter of the transparent (SiO2) and opaque (TiO2) samples is calculated as 36.29 and 27.26 nm using NTA, 36.44 and 27.8 nm analyzing field emission scanning electron microscopy images, and 23.97 and 19.7 nm analyzing transmission electron microscopy images. In the new viewing sample holder, nanoparticles undergo mere Brownian motion with no bulk drift velocity. The effect of solid concentration and wavelength of the laser light on the performance of the NTA sensor is investigated, and the optimal concentration range for model particles is reported.  相似文献   

12.
Carbon–silica nanocomposites obtained by rice husk carbonization in a fluidized-bed reactor using a deep oxidation copper–chromium catalyst were studied. Dispersion characteristics of the silica phase in these systems were determined by small-angle X-ray scattering (SAXS) using the full contrast technique. SiO2 was found in the initial rice husk as compact nanoparticles having a wide size distribution. This distribution consists of a narrow fraction with particle sizes from 1 to 7 nm and a wider fraction with particle sizes from 8 to 22 nm. Oxidative heat treatment of rice husk in a fluidized bed in the presence of the catalyst decreased the fraction of small SiO2 particles and increased the fraction of large ones. It was demonstrated that the particle size of silica in the carbon matrix can be determined selectively for deliberate design of porous carbon materials with desired properties.  相似文献   

13.
Bactericidal activity of high concentration Ag nanoparticles immobilized on surface of an aqueous sol–gel silica thin film was investigated against Escherichia coli and Staphylococcus aureus bacteria. Size of the surface nanoparticles was estimated in the range of 35–80 nm by using atomic force microscopy. Due to accumulation of the silver nanoparticles at near the surface (at depth of 6 nm and about 40 times greater than the silver concentration in the sol), the synthesized Ag–SiO2 thin film (with area of 10 mm2) presented strong antibacterial activities against E. coli and S. aureus bacteria with relative rate of reduction of the viable bacteria of 1.05 and 0.73 h−1 for initial concentration of about 105 cfu/ml, respectively. In addition, the dominant mechanism of silver release in long times was determined based on water diffusion in surface pores of the silica film, unlike the usual diffusion of water on the surface of silver-based bulk materials. Therefore, the Ag nanoparticles embedded near the surface of the SiO2 thin film can be utilized in various antibacterial applications with a strong and long life activity.  相似文献   

14.
Undoped and vanadium-doped Zn2SiO4 particles embedded in silica host matrix were prepared by a simple solid-phase reaction after the incorporation of ZnO and ZnO:V nanoparticles, respectively, in silica monolith using the sol–gel method with supercritical drying of ethyl alcohol in two steps. After supercritical drying and annealing in the temperature range between 1423 and 1473 K in an air atmosphere, the photoluminescence (PL) measurements show a band centered at about 760 nm in the case of non-doped Zn2SiO4 which is attributed to energy transfer from Zn2SiO4 particles to NBOHs interface defects. In the case of vanadium doped Zn2SiO4, the PL reveals a band centered at about 540 nm attributed to the vanadium in the interfaces between Zn2SiO4 particles and SiO2 host matrix. Photoluminescence excitation (PLE) measurements show different origins of the emission bands. The PLE band (~240–350 nm) may be understood as an energy transfer process from O2? to V5+ which occurs intrinsically in the vanadyl group.  相似文献   

15.
Novel nanofluids based on mesoporous silica for enhanced heat transfer   总被引:1,自引:0,他引:1  
Nanofluids, which are liquids with engineered nanometer-sized particles suspensions, have drawn remarkable attraction from the researchers because of their enormous potential to enhance the efficiency in heat-transfer fluids. In the present study, water-based calcined mesoporous silica nanofluids were prepared and characterized. The commercial mesoporous silica (MPSiO2) nanoparticles were dispersed in deionized water by means of pH adjustment and ultrasonic agitation. MPSiO2 nanoparticles were observed to have an average particle size of 350 ± 100 nm by SEM analysis. The concentration of MPSiO2 was varied between 1 and 6 wt%. The physicochemical properties of nanofluids were characterized using various techniques, such as particle size analyzer, zeta-potential meter, TEM, and FT-IR. The thermal conductivity was measured by Transient Plane Source (TPS) method, and nanofluids showed a higher thermal conductivity than the base liquid for all the tested concentrations.  相似文献   

16.
A new method to produce elaborate nanostructure with magnetic and fluorescent properties in one entity is reported in this article. Magnetite (Fe3O4) coated with fluorescent silica (SiO2) shell was produced through the one-pot reaction, in which one reactor was utilized to realize the synthesis of superparamagnetic core of Fe3O4, the formation of SiO2 coating through the condensation and polymerization of tetraethylorthosilicate (TEOS), and the encapsulation of tetramethyl rhodamine isothiocyanate-dextran (TRITC-dextran) within silica shell. Transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and X-ray diffraction (XRD) were carried out to investigate the core–shell structure. The magnetic core of the core–shell nanoparticles is 60 ± 10 nm in diameter. The thickness of the fluorescent SiO2 shell is estimated at 15 ± 5 nm. In addition, the fluorescent signal of the SiO2 shell has been detected by the laser confocal scanning microscopy (LCSM) with emission wavelength (λem) at 566 nm. In addition, the magnetic properties of TRITC-dextran loaded silica-coating iron oxide nanoparticles (Fe3O4@SiO2 NPs) were studied. The hysteresis loop of the core–shell NPs measured at room temperature shows that the saturation magnetization (M s) is not reached even at the field of 70 kOe (7T). Meanwhile, the very low coercivity (H c) and remanent magnetization (M r) are 0.375 kOe and 6.6 emu/g, respectively, at room temperature. It indicates that the core–shell particles have the superparamagnetic properties. The measured blocking temperature (T B) of the TRITC-dextran loaded Fe3O4@SiO2 NPs is about 122.5 K. It is expected that the multifunctional core–shell nanoparticles can be used in bio-imaging.  相似文献   

17.
The optical properties of metallic tin nanoparticles embedded in silicon-based host materials were studied. Thin films containing the nanoparticles were produced using RF magnetron sputtering followed by ex situ heat treatment. Transmission electron microscopy was used to determine the nanoparticle shape and size distribution; spherical, metallic tin nanoparticles were always found. The presence of a localized surface plasmon resonance in the nanoparticles was observed when SiO2 and amorphous silicon were the host materials. Optical spectroscopy revealed that the localized surface plasmon resonance is at approximately 5.5 eV for tin nanoparticles in SiO2, and at approximately 2.5 eV in amorphous silicon. The size of the tin nanoparticles in SiO2 can be varied by changing the tin content of the films; this was used to tune the localized surface plasmon resonance.  相似文献   

18.
This paper describes a simple way for the coating of magnetite nanoparticles (MNPs) with amorphous silica. First, MNPs were synthesized by controlled co-precipitation technique under N2 gas and then their surface was modified with trisodium citrate in order to achieve particles with improved dispersibility. Afterward, magnetite-silica core/shell nanocomposites were prepared by a sol–gel approach, using magnetic fluid including electrostatically stabilized MNPs as seeds. The prepared samples were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, zeta potential analysis and vibrating sample magnetometer (VSM) in order to study their structural and magnetic properties. FT-IR and XRD results imply that resultant nanocomposites are consisted of two compounds; Fe3O4 and SiO2 and TEM images confirm formation of their core/shell structure. TEM images also show increase in silica shell thickness from ∼5 to ∼24 nm with increase in amount of tetraethyl orthosilicate (TEOS) used during the coating process from 0.1 to 0.3 mL. Magnetic studies indicate that Fe3O4 nanoparticles remain superparamagnetic after coating with silica although their Ms values are significantly less than pristine MNPs. These core/shell nanocomposites offer a high potential for different biomedical applications due to having superparamagnetic property of magnetite and unique properties of silica.  相似文献   

19.
In this work, amorphous and crystalline TiO2 films were synthesized by the sol–gel process at room temperature. The TiO2 films were doped with gold nanoparticles. The films were spin-coated on glass wafers. The crystalline samples were annealed at 100°C for 30 minutes and sintered at 520°C for 2 h. All films were characterized using X-ray diffraction, transmission electronic microscopy and UV-Vis absorption spectroscopy. Two crystalline phases, anatase and rutile, were formed in the matrix TiO2 and TiO2/Au. An absorption peak was located at 570 nm (amorphous) and 645 nm (anatase). Photoconductivity studies were performed on these films. The experimental data were fitted with straight lines at darkness and under illumination at 515 nm and 645 nm. This indicates an ohmic behavior. Crystalline TiO2/Au films are more photoconductive than the amorphous ones.  相似文献   

20.
Chen H  Cui S  Tu Z  Gu Y  Chi X 《Journal of fluorescence》2012,22(2):699-706
CdHgTe/SiO2 nanoparticles were prepared by SiO2 capping on the surface of CdHgTe QDs. The characteristics, such as optical spectra, photostability, size and cell toxicity were investigated. The dynamic distribution of CdHgTe/SiO2 nanoparticles was in vivo monitored by near infrared fluorescence imaging system. CdHgTe/SiO2 nanoparticles acted as a novel fluorescence probe have a maximum fluorescence emission of 785 nm and high photo-stability. The hydrodynamic diameter of CdHgTe/SiO2 nanoparticles could be adjusted to 122.3 nm. Compared to CdHgTe QDs, inhibitory effects of CdHgTe/SiO2 nanoparticles on proliferation of HCT116 cells decreased to a certain extent. CdHgTe/SiO2 nanoparticles had their specific dynamic distribution behavior, which provided new perspectives for bio-distribution of nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号