首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Bismuth as BiCl4 and BH4 ware successively retained in a column (150 mm × 4 mm, length × i.d.) packed with Amberlite IRA-410 (strong anion-exchange resin). This was followed by passage of an injected slug of hydrochloric acid resulting in bismuthine generation (BiH3). BiH3 was stripped from the eluent solution by the addition of a nitrogen flow and the bulk phases were separated in a gas–liquid separator. Finally, bismutine was atomized in a quartz tube for the subsequent detection of bismuth by atomic absorption spectrometry. Different halide complexes of bismuth (namely, BiBr4, BiI4 and BiCl4) were tested for its pre-concentration, being the chloride complexes which produced the best results. Therefore, a concentration of 0.3 mol l−1 of HCl was added to the samples and calibration solutions. A linear response was obtained between the detection limit (3σ) of 0.225 and 80 μg l−1. The R.S.D.% (n = 10) for a solution containing 50 μg l−1 of Bi was 0.85%. The tolerance of the system to interferences was evaluated by investigating the effect of the following ions: Cu2+, Co2+, Ni2+, Fe3+, Cd2+, Pb2+, Hg2+, Zn2+, and Mg2+. The most severe depression was caused by Hg2+, which at 60 mg l−1 caused a 5% depression on the signal. For the other cations, concentrations between 1000 and 10,000 mg l−1 could be tolerated. The system was applied to the determination of Bi in urine of patients under therapy with bismuth subcitrate. The recovery of spikes of 5 and 50 μg l−1 of Bi added to the samples prior to digestion with HNO3 and H2O2 was in satisfactory ranges from 95.0 to 101.0%. The concentrations of bismuth found in six selected samples using this procedure were in good agreement with those obtained by an alternative technique (ETAAS). Finally, the concentration of Bi determined in urine before and after 3 days of treatment were 1.94 ± 1.26 and 9.02 ± 5.82 μg l−1, respectively.  相似文献   

2.
An electrochemiluminescence (ECL) sensor with good long-term stability and fast response time has been developed. The sensor was based on the immobilization of tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) into the Eastman-AQ55D–silica composite thin films on a glassy carbon electrode. The ECL and electrochemistry of Ru(bpy)32+ immobilized in the composite thin films have been investigated, and the modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and chlorpromazine (CPZ) in a flow injection analysis system and showed high sensitivity. Because of the strong electrostatic interaction and low hydrophobicity of Eastman-AQ55D, the sensor showed no loss of response over 2 months of dry storage. In use, the electrode showed only a 5% decrease in response over 100 potential cycles. The detection limit was 1 μmol l−1 for oxalate and 0.1 μmol l−1 for both TPA and CPZ (S/N=3), respectively. The linear range extended from 50 μmol l−1 to 5 mmol l−1 for oxalate, from 20 μmol l−1 to 1 mmol l−1 for TPA, and from 1 μmol l−1 to 200 μmol l−1 for CPZ.  相似文献   

3.
A simple and rapid flow injection (FI) method is reported for the determination of phosphate (as molybdate reactive P) in freshwaters based on luminol chemiluminescence (CL) detection. The molybdophosphoric heteropoly acid formed by phosphate and ammonium molybdate in acidic conditions generated chemiluminescence emission via the oxidation of luminol. The detection limit (3× standard deviation of blank) was 0.03 μg P l−1 (1.0 nM), with a sample throughput of 180 h−1. The calibration graph was linear over the range 0.032–3.26 μg P l−1 (r2=0.9880) with relative standard deviations (n=4) in the range 1.2–4.7%. Interfering cations (Ca(II), Mg(II), Ni(II), Zn(II), Cu(II), Co(II), Fe(II) and Fe(III)) were removed by passing the sample through an in-line iminodiacetate chelating column. Silicate interference (at 5 mg Si l−1) was effectively masked by the addition of tartaric acid and other common anions (Cl, SO42−, HCO3, NO3 and NO2) did not interfere at their maximum admissible concentrations in freshwaters. The method was applied to freshwater samples and the results (26.1±1.1–62.0±0.4 μg P l−1) were not significantly different (P=0.05) from results obtained using a segmented flow analyser method with spectrophotometric detection (24.4±4.45–84.0±16.0 μg P l−1).  相似文献   

4.
The rate constant for the reaction between the sulphate radical (SO4√−) and the ruthenium (II) tris-bipyridyl dication (Ru(bipy)32+) is (3.3±0.2)×109 mol−1 dm3 s−1 in 1 mol dm−3 H2SO4 and (4.9±0.5)×109 mol−1 dm3 s−1 in 0.1 mol dm−3, pH 4.7 acetate buffer. The SO4√−radical produced by the electron transfer quenching of Ru(bipy)32+* by S2O82− reacts rapidly with both acetate buffer and chloride ions. These side reactions result in a reduction in the overall quantum yield of Ru(bipy)33+ production and reduced reaction selectivity when Ru(bipy)32+* is quenched by persulphate.  相似文献   

5.
Low-temperature heat capacities of the complex Zn(Thr)SO4·H2O (s) have been precisely measured with a small sample adiabatic calorimeter over the temperature range from 78 to 373 K. The initial dehydration temperature of the complex (Td=325.50 K) has been obtained by analysis of the heat-capacity curve. The experimental values of molar heat capacities have been fitted to a polynomial equation by least square method. The standard molar enthalpy of formation of the complex has been determined from the enthalpies of dissolution (ΔdHmΘ) of [ZnSO4·7H2O (s) +Thr (s)] and Zn(Thr)SO4·H2O (s) in 100 ml of 2 mol dm−3 HCl solvent as: ΔfHm,Zn(Thr)SO4·H2OΘ=−2111.7±3.4 kJ mol−1. These experiments were made by using an isoperibol solution calorimeter at 298.15 K.  相似文献   

6.
Nanocrstalline pure anatase titania were prepared by sol–gel process at room temperature followed by ultrasonication (Ti–US). The photocatalytic activity of Ti–US has been evaluated by the degradation of textile dye, Methylene Blue in presence and absence of common inorganic salts (NO3, C2O42−, SO42−, citrate). It was observed that, in presence of anions, the degradation of the dye increases significantly. The influence of the presence of H2O2 on the degradation rate was studied. The dependence of photodegradation of the dye rates on various parameters such as dye concentration, photocatalyst concentration and pH were also investigated. The photodegradation rate follows first order kinetics. H2O2 and UV light have a negligible effect in absence of Ti–US catalyst. The relative photonic efficiency of the system is reported using phenol as a standard organic compound.  相似文献   

7.
A series of γ-Al2O3 samples modified with various contents of sulfate (0–15 wt.%) and calcined at different temperatures (350–750 °C) were prepared by an impregnation method and physically admixed with CuO–ZnO–Al2O3 methanol synthesis catalyst to form hybrid catalysts. The direct synthesis of dimethyl ether (DME) from syngas was carried out over the prepared hybrid catalysts under pressurized fixed-bed continuous flow conditions. The results revealed that the catalytic activity of SO42−/γ-Al2O3 for methanol dehydration increased significantly when the content of sulfate increased to 10 wt.%, resulting in the increase in both DME selectivity and CO conversion. However, when the content of sulfate of SO42−/γ-Al2O3 was further increased to 15 wt.%, the activity for methanol dehydration was increased, and the selectivity for DME decreased slightly as reflected in the increased formation of byproducts like hydrocarbons and CO2. On the other hand, when the calcination temperature of SO42−/γ-Al2O3 increased from 350 °C to 550 °C, both the CO conversion and the DME selectivity increased gradually, accompanied with the decreased formation of CO2. Nevertheless, a further increase in calcination temperature to 750 °C remarkably decreased the catalytic activity of SO42−/γ-Al2O3 for methanol dehydration, resulting in the significant decline in both DME selectivity and CO conversion. The hybrid catalyst containing the SO42−/γ-Al2O3 with 10 wt.% sulfate and calcined at 550 °C exhibited the highest selectivity and yield for the synthesis of DME.  相似文献   

8.
This work presents chemical modeling of solubilities of metal sulfates in aqueous solutions of sulfuric acid at high temperatures. Calculations were compared with experimental solubility measurements of hematite (Fe2O3) in aqueous ternary and quaternary systems of H2SO4, MgSO4 and Al2(SO4)3 at high temperatures. A hybrid model of ion-association and electrolyte non-random two liquid (ENRTL) theory was employed to fit solubility data in three ternary systems H2SO4–MgSO4–H2O, H2SO4–Al2(SO4)3–H2O at 235–270 °C and H2SO4–Fe2(SO4)3–H2O at 150–270 °C. Employing the Aspen Plus™ property program, the electrolyte NRTL local composition model was used for calculating activity coefficients of the ions Al3+, Mg2+ Fe3+ and SO42−, HSO4, OH, H3O+, respectively, as well as molecular species. The solid phases were hydronium alunite (H3O)Al3(SO4)2(OH)6, hematite Fe2O3 and magnesium sulfate monohydrate (MgSO4)·H2O which were employed as constraint precipitation solids in calculating the metal sulfate solubilities. A correlation for the equilibrium constants of the association reactions of complex species versus temperature was implemented. Based on the maximum-likelihood principle, the binary interaction energy parameters for the ionic species as well as the coefficients for equilibrium constants of the reactions were obtained simultaneously using the solubility data of the ternary systems. Following that, the solubilities of metal sulfates in the quaternary systems H2SO4–Fe2(SO4)3–MgSO4–H2O, H2SO4–Fe2(SO4)3–Al2(SO4)3–H2O at 250 °C and H2SO4–Al2(SO4)3–MgSO4–H2O at 230–270 °C were predicted. The calculated results were in excellent agreement with the experimental data.  相似文献   

9.
Horseradish peroxidase (HRP) was immobilised on silica gel modified with titanium oxide. This material was employed to prepare modified carbon paste electrode. The direct electron transfer of the hydrogen peroxide reduction by HRP was blocked when immobilised on silica–titanium. This biosensor presented a very sensitive response for phenol (1 μmol l−1) at an applied potential of 0 mV vs SCE. The best condition was achieved in phosphate buffer pH 6.8, ratio of hydrogen peroxide/phenol higher than 0.35. The biosensor showed a linear response range between 10 and 50 μmol l−1 of phenol, adjusted by the equation j=−32.8+16.3 [phenol], for n=5 with a correlation coefficient of 0.9995. The response time of the biosensor was about 3 s.  相似文献   

10.
The paper reports results of a study on the specific adsorption of F, Cl, Br, I, ClO3, BrO3, IO3 and IO4 on hydrous γ-Al2O3. The isotherms of the anion adsorption and the adsorption dependencies on pH and the ionic strength of the solution have been determined under the equilibrium conditions. According to the degree of affinity to γ-Al2O3, the anions can be ordered as: I3334−. It has been established that the sorption of IO4 and F involves the formation of surface complexes in the inner co-ordination sphere, whereas that of Cl, Br, I, ClO3, BrO3 and IO3 takes place through formation of ion pair complexes in the outer co-ordination sphere. In the dynamic system, the exchange isoplanes and elution curves have been determined for selected anions on columns filled with Al2O3. It has been shown that γ-Al2O3 can be used for isolation and concentration of IO3 from natural waters in order to decrease the limit of the ions determination to 2 μg l−1. Using differential pulse voltammetry (DPV), after isolation and concentration on γ-Al2O3, the content of iodates has been determined in mineral, marine and tap water doped with these ions.  相似文献   

11.
This paper describes an electrostatic ion chromatographic system in which the separation selectivity for inorganic anions, especially for sulfate and phosphate, could be manipulated by altering the molar ratio of the zwitterionic and cationic surfactants in the column coating solution used to prepare the stationary phase. The zwitterionic surfactant used for this study was 3-(N,N-dimethyltetradecylammonio)propanesulfonate (Zwittergent-3-14) and the cationic surfactant was tetradecyltrimethylammonium (TTA). Using a reversed-phase C18 column (250×4.6 mm I.D.) coated with 10/10 (mM/mM) of TTA/Zwittergent-3-14 mixed micelles as the stationary phase and either NaHCO3 or Na2CO3 aqueous solution as the eluent, together with suppressed conductivity detection, baseline separation of seven model inorganic anions was obtained. The elution order for those anions was found to be F42−42−23. Under the same conditions but using 1/10 (mM/mM) of TTA/Zwittergent-3-14 mixed micelles as the column coating solution, the elution order for these model ions was F42−42−23. The early elution of phosphate and sulfate is a unique attribute of this system. Detection limits for F, HPO42−, Cl, SO42−, NO2, Br and NO3 (S/N=3, sample injection volume 100 μl) were 0.11, 0.12, 0.12, 0.18, 0.49, 0.49, 0.52 μM, respectively.  相似文献   

12.
Using zinc hexamethylenedithiocarbamate (Zn(HMDC)2) and flame atomic absorption spectrometry (FAAS) and/or flow injection hydride generation atomic absorption spectrometry (FI-HGAAS), solvent extraction of As(III) from HCl and H2SO4 media into 2,6-dimethyl-4-heptanone (diisobutyl ketone, DIBK) was examined. Arsenic(III) was quantitatively extracted with 2.41×10−3 mol l−1 Zn(HMDC)2 from about 0.004 (pH 2.4) to 4 mol l−1 HCl and H2SO4 aqueous solutions. The logarithmic conditional extraction constant of As(HMDC)3 in the HCl–DIBK system was determined to be 8.3±0.7, by the measurement of the distribution ratios of Zn(II) and As(III). The effectiveness of the proposed extraction method was ascertained in the determination of As in geochemical standard reference materials supplied by the Geological Survey of Japan. Furthermore, the analysis of arsenic in procedural blanks was 0.083±0.003 μg l−1.  相似文献   

13.
Organic-rich natural waters from peat bogs in continental (Switzerland) and maritime (Shetland Islands, Scotland) areas were analysed for Cl, NO2, Br, NO3, HPO42−, SO42− and oxalate using ion chromatography. These anions can be determined simultaneously in the surface and pore water samples from the continental bogs using a 250-μl injection loop. Using this loop, the detection limits were ca. 5 ng/g for the monovalent anions and SO42− and 10 ng/g for HPO42− and oxalate. An organics-removal cartridge (Dionex OnGuard P) was used to remove humic materials. These cartridges did not significantly affect the measured concentrations of anions in blind standards. Analyses of deionized water treated with these cartridges are not significantly different from those for untreated deionized water. For the maritime bogs, the relatively high concentrations of Cl (more than 100μ/g in many samples) and SO42− (up to 50 μg/g) require two separate determinations for complete analyses. A 10-μl injection loop was used to determine Cl, Br and SO42−. A 250-μl injection loop was used to measure NO2, NO3, HPO 42− and oxalate. In each instance a Dionex OnGuard P cartridge was used to remove humic materials. In addition, a chloride-removal cartridge (Dionex OnGuard AG) was used to remove Cl when the larger injection loop was used. This cartridge has no significant effect on the measurement of HPO4-2− at concentrations of 20 ng/g. In each of the bog water chromatograms there were usually a number of unknown peaks. These are probably due mainly to organic anions.  相似文献   

14.
A new method has been developed for ion-interaction chromatography with suppressed conductivity detection and a new graphitized carbon packing, which is sintered from carbonic material at a high temperature. Combinations of various eluting agents, tetrabutylammonium hydroxide (TBA) and acetonitrile have been investigated to optimize the separation of eight common anions (F, Cl, NO2, Br, NO3, SO42−, HPO42− and I). Calibration curves were linear from 0.5 to 10 μg/ml for F, from 1.0 to 20 μg/ml for Cl, NO2 and NO3, from 2.5 to 50 μg/ml for Br and SO42− and from 5.0 to 100 μg/ml for HPO42− and I with a correlation coefficient (r) of 0.999 or better. The relative standard deviations (R.S.D.s) of peak areas were between 0.2 and 0.9% for 10 repeated measurements. The application of this newly developed method was demonstrated by the determination of chloride, bromide and sulfate in pharmaceutical compounds using the direct injection method. The analytical results were within ±2% (relative) of the theoretical value, and thus in good agreement with the theoretical value for each sample.  相似文献   

15.
Xu S  Tu G  Peng B  Han X 《Analytica chimica acta》2006,570(2):151-157
A novel strategy to construct a sensitive mediatorless sensor of H2O2 was described. At first, a cleaned gold electrode was immersed in thiol-functionalized poly(styrene-co-acrylic acid) (St-co-AA) nanosphere latex prepared by emulsifier-free emulsion polymerization St with AA and function with dithioglycol to assemble the nanospheres, then gold nanoparticles were chemisorbed onto the thiol groups and formed monolayers on the surface of poly(St-co-AA) nanospheres. Finally, horseradish peroxidase (HRP) was immobilized on the surface of the gold nanoparticles. The sensor displayed an excellent electrocatalytical response to reduction of H2O2 without the aid of an electron mediator. The biosensor showed a linear range of 8.0 μmol L−1–7.0 mmol L−1 with a detection limit of 4.0 μmol L−1. The biosensor retained more than 97.8% of its original activity after 60 days’ storage. Moreover, the studied biosensor exhibited good current reproducibility and good fabrication reproducibility.  相似文献   

16.
As a part of the European EUROCORE and GRIP (Greenland Ice Core Project) operations aimed at recovering deep ice cores at Summit (Central Greenland), we have for the first time successfully performed ion chromatography measurements in the field and investigated in detail the soluble impurities, including Na+, NH+4, K+, Mg2+, Ca2+, F, CH3COO, CH2 OHCOO, HCOO, CH3SO3, Cl, NO2, SO42− and C2O42−, trapped in ice deposited over some 200 000 years in Greenland.  相似文献   

17.
The paper describes the determination of the molybdenum content in white wines based on its catalytical action on the kalium iodide oxidation by hydrogen peroxide in acid medium.

The optimum reaction conditions (the catalyst, KI and H2O2 concentrations, the pH value, the order of the reagent additions, the temperature) have been found by studying the effect of the reaction variables.

The influence of some metallic ions (Ca2+, Mg2+, Zn2+, Cd2+, Fe2+ and Fe3+) and complexing anions (F, C2O2−4, EDTA4−) on the catalyzed reaction rate was elucidated.

The molybdenum concentration was estimated by the tangent, fixed-time and fixed-absorbance method. The obtained average values for molybdenum content in white wines are within the 1.77×10−7–1.83×10−7 mol l−1 range.  相似文献   


18.
Solid acids – NiSO4/Al2O3, Fe2(SO4)3/Al2O3 and TiO2/SO42− – appeared to be effective catalysts for the acid catalyzed synthesis of methyl ester of trifluoropyruvic acid. They are active at 150–180 °C.  相似文献   

19.
Nanophotocatalysis using nanostructured semiconductors constitute one of the emerging technologies for destructive oxidation of organics such as dyes. This paper deals with the decolorization and mineralization of reactive dyes by heterogeneous nanophotocatalysis using an immobilized TiO2 nanoparticle photocatalytic reactor. A simple and effective method was used to immobilization of titanium dioxide nanoparticles. Reactive Orange 107 (RO 107, sulphatoethylsulphonyl reactive dye) and Reactive Red 152 (RR 152, monochlorotriazine reactive dye) were used as model compounds. UV–vis and ion chromatography (IC) analyses were employed to obtain the details of the photocatalytic degradation of the selected dyes. The effects of operational parameters such as H2O2, dye concentration, anions (NO3, Cl, SO42−, HCO3 and CO32−) and pH were investigated. Formate, acetate and oxalate anions were detected as dominant aliphatic intermediates where, they were further oxidized slowly to CO2. Nitrate, sulfate and chloride anions were detected as the photocatalytic mineralization of RO 107 and RR 152. Kinetics analysis indicates that the photocatalytic decolorization rates can usually be approximated zero-order model for RO 107 and first-order model for RR 152 dyes. Results show that the photocatalytic process occurred at solution bulk and the employment of optimal operational parameters may lead to complete decolorization and mineralization of dye solutions.  相似文献   

20.
Li Liu  Jun-feng Song  Peng-fei Yu  Bin Cui 《Talanta》2007,71(5):1842-1848
A novel voltammetric method for the determination of β-d-glucose (GO) is proposed based on the reduction of Cu(II) ion in Cu(II)(NH3)42+–GO complex at lanthanum(III) hydroxide nanowires (LNWs) modified carbon paste electrode (LNWs/CPE). In 0.1 mol L−1 NH3·H2O–NH4Cl (pH 9.8) buffer containing 5.0 × 10−5 mol L−1 Cu(II) ion, the sensitive reduction peak of Cu(II)(NH3)42+–GO complex was observed at −0.17 V (versus, SCE), which was mainly ascribed to both the increase of efficient electrode surface and the selective coordination of La(III) in LNW to GO. The increment of peak current obtained by deducting the reduction peak current of the Cu(II) ion from that of the Cu(II)(NH3)42+–GO complex was rectilinear with GO concentration in the range of 8.0 × 10−7 to 2.0 × 10−5 mol L−1, with a detection limit of 3.5 × 10−7 mol L−1. A 500-fold of sucrose and amylam, 100-fold of ascorbic acid, 120-fold of uric acid as well as gluconic acid did not interfere with 1.0 × 10−5 mol L−1 GO determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号