首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yi  Long  Zhu  Li-Na  Ding  Bin  Cheng  Peng  Liao  Dai-Zheng  Zhai  Yu-Ping  Yan  Shi-Ping  Jiang  Zong-Hui 《Transition Metal Chemistry》2004,29(2):200-204
Two novel complexes, [Cu(HL)2(H2O)]2(OH)2(ClO4)2·1.5H2O (1) and [Cu(HL)2]Cl2·4H2O (2), have been prepared by reacting copper salts with the 4-amino-3-ethyl-1,2,4-triazole-5-thione (HL) ligand in neutral solution and in HCl (6 mol L–1) medium, respectively. They were characterized by FT-IR and u.v.–vis. spectra, and the structures were determined by single crystal X-ray diffraction techniques. In both complexes, the triazole ligand chelated the metal ions through the amine and thione substituents on the five-membered ring. Complex (1) has a square-pyramidal copper(II) ion coordinated by two triazole ligands and one water molecule. Unlike (1), the Cu2+ ion in (2) displays its characteristic Jahn–Teller distortion with the distance of the Cl anions to metal ion further away than that of the triazole ligands. The most intriguing structural features of the title complexes are that the HL ligands chelate copper(II) ions through the N(1) and S(1) atoms, in a cis mode in (1) and a trans mode in (2). In both cases, self-assembled crystals, by supramolecular contacts simultaneously, form two multi-dimensional frameworks.  相似文献   

2.
Some cobalt(II) complexes of 4,6-dimethylpyrimidine-2(1H)-one (HL) have been prepared and studied by infrared and electronic spectra and by magneto-chemical and conductometric measurements. The ligand is coordinated through the unprotonated ring-nitrogen atom and in one case also through the carbonylic oxygen atom. The “blue” complexes [CoX2 · 2HL] (X2 = Cl2, ClBr, Br2, (NCS)2) and [CoX2 · 2HL] · 2HL (X = Cl, Br) have a distorted C2v [CoX2N2] coordination; the thiocyanate ion is N-bonded to the metal. The “green” complexes CoX2 · 2HL (X = Cl(4H2O), Br) have a square-pyramidal [CoX2N2O] coordination. The “pink” CoX2 · 4HL · nH2O (X = ClO4, n = 2; X = BF4, n = 8; X = F3Ac, n = 4) and “cream” CoX2 · 4HL · 6 H2O (X = I, ClO4) complexes have an octahedral coordination; only the F3Ac? ion is coordinated. The “cyclamen” CoAcL · 2HL · 2 H2O and Co3Ac4L2 · 2HL · 2H2O complexes have a polynuclear constitution; the Ac? ion behaves as bidentate ligand.  相似文献   

3.
Summary Gold(I) forms linear [AuL2]X complexes (X = Cl, Br, I or CIO4) with thioacetamide and thiobenzamide, AuLX compounds with thiobenzamide (X = CI or Br),N, N-dimethylthioformamide (X = Cl, Br or 1) andN-dimethylthioacetamide (X = CI, Br or 1). Thev(AuS) vibrations are assigned in the 320-260 cm–1 range. The i.r. spectra further suggest hydrogen bonding between the ligands and the anions. The conductivity measurements indicate dissociation of the [AuL2]X complexes (X = halide) and coordination of X in solution.Presented in part at the XIX ICCC, Prague, 1978.  相似文献   

4.
Copper(II) and cobalt(II) complexes with 4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-methyl-2-phenylpyrimidine (L) of the general formula MLX2 (M = Cu(II), X = Cl and Br; M = Co(II), X = Cl, Br, and I) were obtained. According to X-ray diffraction data, CuLBr2 and CoLX2 (X = Cl, Br, and I) are mononuclear molecular complexes. The ligand L is coordinated to the metal atom in a chelating bidentate fashion through the N atoms of the pyrimidine and pyrazole rings. The coordination polyhedron of the metal atom is extended to a distorted tetrahedron by two halide ions. In solution, CuLBr2 undergoes slow transformation into CuL(1?x)L′ x Br2 and the binuclear (X-ray diffraction data) Cu(I) complex [CuL(1?x)L′ x Br]2 (L′ is 4-(4-bromo-3,5-dimethyl-1H-pyrazol-1-yl)-6-methyl-2-phenylpyrimidine). The complexes MLX2 show weak antiferromagnetic interactions between the M2+ ions.  相似文献   

5.
The [Pd(cod)(cotl)]ClO4 complex (cod = cycloocta-1,5-diene; cotl = cyclooctenyl, C18H13 ) undergoes substitutions with new Schiff base ligands containing benzimidazole L [L = 2-(2-N-n-propylidenephenyl)benzimidazole (L1); 2-(2-N-i-propylidenephenyl)benzimidazole (L2); 2-(2-N-n-butylidenephenyl)benzimidazole (L3); 2-(2-N-i-butylidenephenyl)benzimidazole (L4)]. Facile displacement of cod by L occurs to produce complexes of the type [Pd(cotl)L]ClO4· nMe2CO (n= 0; L = L1, L2 or L3; n= 2, L = L4). Dihalobridge complexes of the type [Pd(cotl)X]2(X = Cl or Br) undergo halogen-bridge cleavage with L1–L4 to give mononuclear complexes of the type Pd(cotl)LX · nH2O (n= 2, X = Cl, L = L1; n= 0, X = Br, L = L1; n= 0, X = Cl, L = L2; n= 0, X = Cl or Br, L = L3; n= 0, X = Cl, L = L4; n= 2, X = Br, L = L4) and a binuclear complex [Pd(cotl)Br]2L2. The complexes were characterised by physical properties, i.r., 1H- and 13C-n.m.r. spectral techniques and by mass spectra. Probable structures have been proposed.  相似文献   

6.
The [M(HL)2(H2O)2]X2 complexes were synthesized (M = Mn(II), Co(II), Ni(II), Cu(II), Zn; X = CH3COO, Cl, BF4 ) that incorporate bidentately coordinated molecules of N,N-dimethylhydrazide of 4-nitrobenzoic acid (HL). The latter molecules chelate the metal atom through the carbonyl O atom and the N atom of dimethylamino group. The square-planar complexes of Cu and Ni with deprotonated form of a ligand with composition ML2 were also isolated. The synthesized complexes were studied by IR, electronic and EPR spectroscopies, and by cyclic voltammetry.  相似文献   

7.
Potentially bi- and tetra-dentateSchiff bases derived from salicylaldehyde react with hydrated uranyl salts to give complexes: UO2H2 LX 2, UO2H2 LX 2 and UO2(HL)2 X 2 [H2 L=N,N-propane-1,3-diylbis(salicylideneimine), H2 L=N,N-ethylenebis(salicylideneimine) and HL=N-phenylsalicylideneimine;X =Cl, Br, I, NO3 , ClO4 , and NCS]. Because of marked spectral similrities with the structurally known Ca(H2 L) (NO3)2, theSchiff bases are coordinated through the negatively charged phenolic oxygen atoms and not the nitrogen atoms of the azomethine groups which carry the protons transferred from phenolic groups on coordination. Halide, nitrate, perchlorate and thiocyanate groups are covalently bonded to the uranyl ion, resulting a 6-coordinated uranium ion in the halo and thiocyanato complexes and 8-coordinated in nitrato and perchlorato complexes.
Komplexe von Dioxouranyl(VI) mit zwitterionischen Formen von zwei- und vierzähnigen Schiff-Basen
Zusammenfassung Von Salizylaldehyd abgeleitete zwei- und vierzähnigeSchiff-Basen reagieren mit hydratisierten Uranylsalzen zu Komplexen folgenden Typs: UO2H2 LX 2, UO2H2 LX 2 und UO2(HL)2 X 2 [H2 L=N,N-Propan-1,3-diylbis(salicylidenimin), H2 L=N,N-Ethylen-bis(salicylidenimin) und HL=N-Phenylsalicylidenimin;X =Cl, Br, I, NO3 , ClO4 und NCS]. Auf Grund eindeutiger spektraler Ähnlichkeiten mit dem bekannten Ca(H2 L) (NO3)2 wird auf Koordination über die negativ geladenen phenolischen Sauerstoffatome (und nicht über die Azomethin-Stickstoffe) geschlossen. Die AnionenX sind kovalent an das Uranyl-Ion gebunden; damit ergibt sich ein hexakoordiniertes Uranyl-Ion für die Halogen- und Thiocyanat-Komplexe und Oktakoordination für die Nitrat- und Perchlorat-Komplexe.
  相似文献   

8.
Summary New complexes of the general formulae [MLA(H2O)2]-Cl2 (M=Ni or Cu), [MLAX2] (M=Co or Cu; X=Cl or Br), [NiLABr2]·H2O, [MLA] [MCl4] (M=Pd or Pt), [NiLB(H2O)2]Cl2·2H2O, [MLBCl2] (M=Co, Ni, Cu, Pd or Pt; X=Cl or Br) and [MLB] [MCl4] (M=Pd or Pt), where LA=N,N-ethylenebis(2-acetylpyridine imine) and LB=N, N-ethylenebis(2-benzoylpyridine imine), have been isolated. The complexes were characterized by elemental analyses, conductivity measurements, t.g./d.t.g. methods, magnetic susceptibilities and spectroscopic (i.r., far-i.r., ligand field,1Hn.m.r.) studies. Monomeric pseudo-octahedral stereochemistries for the CoII, NiII and CuII complexes andcis square planar structures for the compounds [MLBX2] (M=Pd or Pt; X=Cl or Br) are assigned in the solid state. The molecules LA and LB behave as tetradentate chelate ligands in the CoII, NiII, CuII and Magnus-type PdII and PtII complexes, bonding through both the pyridine and methine nitrogen atoms. A bidentateN-methine coordination of the Schiff base LB is assigned in the [MLBX2] complexes (M=Pd or Pt; X=Cl or Br). The anomalous magnetic moment values of the CoII complexes are discussed.  相似文献   

9.
Summary 1-Phenyl-4,6-dimethylpyrimidine-2-thione (L) and its protonated cation 1-phenyl-4,6-dimethyl pyrimidinium-2-thione , have been employed to prepare the following copper(I) complexes: CuXL (X=Cl, Br, I, ClO4 or BF4), (CuX)3L2 (X=Cl, Br, I or SCN), (CuX)2L5 (X= ClO4 or BF4) and the zwitterionic species CuXY(LH) X=Y=Cl, Br or I; X=Br; Y=Cl; X=I; Y=Br). Chemical analysis, conductivity, and near-and far-i.r. spectroscopic data are presented and the chemical relationships between them discussed in terms of postulated dinuclear or polynuclear species for the complexes. Metalligand vibrations suggest that the neutral ligand is N, S-bidentate in its copper(I) complexes as well as S-coordinat for the cation in the zwitterionic compounds. Diagnostic i.r. bands frequencies of counterions and (Cu–X) modes indicate the coordinating character of Cl, Br, I, SCN and of ClO 4 , BF 4 (in CuXL) anions. For the chloro-complexes CuClL and (CuCl)3L2, salt-like species of the [CuL2][CuCl2] and [{Cu2L2Cl}n] [CuCl2]n type respectively, are proposed. The polarographic data for the perchlorate complexes have shown that in dimethylformamide (DMF) solution, the prevailing species are CuClO4L, CuClO4L2 and (CuClO4)2L5; their overall stability constants were determined.  相似文献   

10.
Summary Reaction of 1,3-thiazolidine-2-thione and copper(II) chloride and bromide in MeOH yields CuL3X complexes. These react with an excess of copper(II) halide to give CuL2X complexes. From their i.r. spectra, all the complexes seem to be S-bonded to the metal. Thev(CuCl) vibration is identified at 236 cm–1.  相似文献   

11.
Summary The synthesis and characterisation of the coordination compounds of some copper(II) salts with bis (1-pyrazolyl)propane, Me2Cpz2, are reported. Coloured stable solid complexes of the type Cu(Me2Cpz2) X2(X = Cl, Br or AcO), Cu(Me2Cpz2)(ClO4)2 · H2O, [Cu(Me2Cpz2)SO4 · 2 H2O] · H2O and [Cu(Me2Cpz2)2X]X (X = NO 3 or ClO 4 ) have been isolated and characterised by elemental analysis, electronic, i.r. and magnetic measurements. Probable structures of the complexes are discussed on the basis of their spectral data.  相似文献   

12.
Compounds [Co(H2 L]X 2(X=Cl, Br, I, NO3, ClO4), [Co(H2 L–Br2)]Br2, [Co(H2 L–Br2py 2]Br2 and [Co(H2 L)Cl]Cl2 were isolated. They were investigated by means of thermoanalysis, IR and VIS spectroscopy, magnetochemistry and molar conductivity.
  相似文献   

13.
Summary Some copper(II) complexes of the types: Cu(HPPK)-(PPK)X, Cu(HMPK)(MPK)X (where HPPK = syn-phenyl-2-pyridylketoxime, HMPK = syn-methyl-2-pyridylketoxime and X = Cl, Br, I, NO3 , SCN or SeCN) Cu(HPPK)2SO4 3 H2O and Cu(HMPK)2SO4 · 3 H2O were synthesized and characterized by analysis, magnetic susceptibility, e.s.r., reflectance and i.r. spectral measurements. The spectral data suggest that Cu(HPPK)(PPK)X and Cu(HMPK)(MPK)X containcis square-coplanar [Cu(HPPK)(PPK)]+ and [Cu(HMPK)(MPK)]+ units respectively, linked by weakly coordinated anions, giving infinite polymeric highly distorted octahedral chain structures, whereas Cu(HPPK)2SO4 · 3H2O and Cu(HMPK)2SO4 · 3 H2O have acis distorted octahedral structure containing two ligand molecules of ketoxime and a bidentate sulphate group. The polycrystalline e.s.r. spectra suggest a distorted octahedral stereochemistry for the CuII ion involving a ground-state. By using e.s.r. and reflectance spectral data, the orbital reduction parameters, k11 and k1 were calculated and interpreted in terms of molecular orbital coefficients.  相似文献   

14.
Summary The syn-2-picolyl phenyl ketoxime (HL1) and the syn-2-quinaldyl phenyl ketoxime (HL2) give [M(HL)LX], [M(HL)2X2] and [ML] solid complexes (M=Co, Ni and Cu; X=Cl, Br and NO 3 which have been characterized by elemental analysis, room temperature magnetic moments and electronic and i.r. spectral measurements.  相似文献   

15.
Summary Some copper(II) complexes of the type Cu(HL)X·nH2O (where H2L = benzoin thiosemicarbazone; X=NO3; Cl, Br, SCN, ClO4 or 1/2SO4; n=O–2) have been prepared and characterized. All complexes have tetragonally distorted octahedral stereochemistry except the sulphatocomplex which is square pyramidal. The i.r. spectra reveal that HL acts as a monobasic tridentate ligand coordinating through the azine group nitrogen atom, thiocarbonyl sulphur atom and hydroxylic oxygen atom while NO3, Cl, Br and ClO4 act as terminal monodentate ligands and SCN and SO4 act as bidentate bridging ligands. The polycrystalline e.s.r. spectra suggest tetragonal symmetry for the copper(II) ion, involving a dx 2–y2 ground state.  相似文献   

16.
Copper(II) complexes with 3-N,N-dimethylaminocaran-4-one-oxime (HL) were synthesized and characterized by X-ray diffraction analysis, photoelectronic, IR, and EPR spectroscopy, magnetic susceptibility, and thermal analysis methods, and their optical activities were studied. The [Cu2(HL)2Cl4] complex is a dimer with weak exchange interactions between unpaired electrons of the Cu(II) ions. The [Cu3L3(OH)Cl]Cl · 8H2O structure is composed of triangular trinuclear complex cations, outer-sphere Clanions, and water molecules. The exchange parameter Jfor the trinuclear exchange cluster is –190 cm–1. The title complexes are optically active in the visible range of the spectrum.  相似文献   

17.
Abstract

The infrared spectra of the complexes M(aq)2(H2O)2X2 (M = Fe, Co, Ni, Cu; aq = 8-aminoquinoline; X =Cl, Br) have been determined over the range 4000-50 cm?1. Absence of vM-X bands indicates that the halide is not coordinated to the metal ion and the complexes are correctly formulated [M(aq)2-(H2O)2]X2. Deuteration of the amino group and the effects of metal ion substitution enable assignment of the vM-NH2, vM-N and vM-OH2 modes as well as the amino group vibrations. 18 O-Labelling assists in identifying the vO-H, vO-H……X and δO-H bands. The spectra are consistent with trans-octahedral coordination and axial bonding of the water molecules. The far infrared spectra of the mono(aminoquinoline) complexes [M(aq)X2]n (M = Cu, Zn; X = Cl, Br) are consistent with the proposed structure of polymeric octahedral coordination involving both bridging and terminal M-X bonds. The vM-NH2, vM-N, vM-X(terminal) and vM-X(bridging) bands are assigned by studying the effects of amino group deuteration, metal ion substitution and halide substitution.  相似文献   

18.
Summary The reactions of some copper(II) salts with bis(1-pyrazolyl)methane, H2Cbpz, bis(3,5-dimethylpyrazolyl)methane, H2Cbdmpz, and tris(1-pyrazolyl)methane, HCtpz give the following solid complexes: CuLX2 · nH2O (L=H2Cbpz, H2Cbdmpz or HCtpz; X=Cl, Br, NO 3 , OAc, or 1/2 SO 4 2– and n=0, 1, 3 or 5) and CuL2X2 · nH2O (L=HCtpz, X= C, Br, NO 3 or ClO 4 and n=0 or 2). The complexes have been characterised by elemental analysis, visible and i.r. spectral measurements.The reactions of Cu(HCtpz)X2 · nH2O (X=Cl or Br) with acetylacetonate (acac), dialkyldithiocarbamate (S2CNMe 2 , S2CNEt 2 ) or poly(1-pyrazolyl)borate (H2Bbpz, HBtpz) in aqueous solutions lead to the displacement of HCtpz and the subsequent formation of neutral [Cu(acac)2], [Cu(S2CNR2)2], [Cu(H2Bbpz)2] and Cu(HBtpz)2 while the reaction with oxalate ion, C2O 4 2– yields a stable neutral solid compound, [Cu(HCtpz)(C2O4)].  相似文献   

19.
Summary Copper(II) salts were reacted with two diamino-dithioether ligands, i.e. 1,3-di(o-aminophenylthio)propane (abbreviated H2L1) and 1,2-di(o-aminophenylthio)xylene (abbreviated H2L2). Mixtures of copper(I) and copper(II) complexes were obtained with Cl and ClO 4 counterions. The major products were the copper(I) complexes, which were obtained pure after recrystallisation from MeCN-MeOH. The ligands lose two protons from the amine functions to form copper(I) complexes of general formula [CuL]X, where X = ClO 4 or Cl. The complexes were oxidised to [CuL]X2 with H2O2 in DMF. Cu(NO3)2 on the other hand gave [CuH2LNO3]NO3.  相似文献   

20.
Summary Nickel(II) and copper(II) complexes of 2,5-dimethyl-1,3,4-thiadiazole Ni(DTZ)X2 (X = Cl or Br) and M(DTZ)2X2 (M = Ni, X = 1 or N03; M = Cu, X = Cl, Br or NO3) have been prepared. The i.r. spectra show that in all the complexes the ligand is N,N- or N-bonded to the metal while the sulfur atom does not participate in coordination, and that the halide ions are coordinated forming terminal M-X bonds. The NO 3 - group is coordinated in both the nitrato complexes. Magnetic moments of 3.07–3.29 B.M. for the nickel(II) and 1.86–1.92 B.M. for the copper(II) complexes were observed. The Ni(DTZ)X2 complexes have a pseudo-tetrahedral [N2X2] coordination with N,N-bridging ligand molecules. The Ni(DTZ)2X2 and Cu(DTZ)2X2 complexes, with predominantly monodentate ligand, involve six-coordinate metal atoms with strong equatorial [N2X2] bonds and weaker axial bonds.Author to whom all correspondence should be directed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号