首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
顾仁敖  沈晓英  王梅 《物理化学学报》2005,21(10):1117-1121
利用表面增强拉曼光谱(SERS)对2,2′-联吡啶分子在锌电极表面的吸附进行了研究. 实验表明, 2,2′-联吡啶和锌电极有较强的相互作用, 2,2′-联吡啶和锌表面的氧物种存在竞争吸附, 起始电位较正时, 氧物种的吸附使2,2′-联吡啶吸附电位负移;起始电位较负时, 2,2′-联吡啶的吸附抑止氧物种的吸附, 使其吸附电位正移, 且相同电位下氧化种的吸附量大大减少. 同时当电极电位由正往负移时, 吸附在锌表面的2,2′-联吡啶会发生构型转化, 在-1.3 V下以顺式构型垂直吸附, 而当电位负移至-1.4 V时则以反式构型吸附;而电极电位由负往正移时, 在研究电位区间内2,2′-联吡啶都以反式构型吸附, 不存在构型的转化.  相似文献   

2.
采用电化学现场表面增强拉曼光谱(SERS)研究了非水体系中苯并三唑(BTAH)在铜电极上的吸附及成膜行为, 结果表明非水体系中BTAH的吸附行为随电位变化而不同. 较负电位区间主要以中性分子形式吸附; 中间电位区间主要以BTA吸附并不可逆成膜; 而在氧化电位区间主要表现为铜的氧化. 随中性配体三苯基膦(pph3)的加入, 在中间电位区间, 由于易溶的Cu(pph3)n+的生成而使铜的溶解速度加快, 最终该阳离子在溶液中和BTA-作用而生成了多核铜的配合物. 采用直接电化学方法模拟电极表面过程合成了相应的吸附产物, 并对其组成进行了相关表征.  相似文献   

3.
采用高灵敏度的表面增强拉曼光谱(SERS)技术, 结合不同长度的探针分子, 通过电化学调控研究了Fe电极在离子液体中的表面增强因子、零电荷电位、界面吸附及界面双电层结构. 利用壳层隔绝纳米粒子增强拉曼光谱(SHINERS)技术提高表面吸附物种的拉曼信号, 降低高浓度本体的信号干扰, 研究了1-丁基-3-甲基咪唑四氟硼酸盐([BMIm]BF4)离子液体本身在Au@SiO2修饰的Fe电极表面的吸附行为. 结果表明,[BMIm]BF4在Au@SiO2修饰的Fe电极表面的吸附行为随电位变化而变化. 在-1.3 V以正区间, 咪唑阳离子以垂直吸附为主, 随电位负移逐渐倾斜甚至平躺吸附于电极表面; 当电位负至-2.3 V, 咪唑阳离子还原成卡宾. 再分别以不同分子长度的硫氰根(SCN-)和4-氰基吡啶(4-CNPy)为探针分子, 发现SCN-在[BMIm]BF4中以N端吸附在纯Fe电极上, 三键频率随电位变化的速率, 即Stark系数为17 cm-1/V; 4-CNPy以吡啶环上的N垂直吸附于Fe电极上, 频率保持不变, 即Stark系数接近零. 以上结果表明, 在离子液体中电极界面双电层与水体系的差别较大, 电位主要分布在电极紧密层中, 几乎无分散层存在. 此外, 还计算了[BMIm]BF4中Fe电极的增强因子约为1.5×102.  相似文献   

4.
应用电化学伏安法和表面增强拉曼光谱(SERS)研究在-1.0 V~0 V电位区间内胞嘧啶于粗糙金电极表面的吸附行为.结果表明,在本实验的电位区间,胞嘧啶是以其N3位垂直吸附在粗糙金电极表面的.在负电位区间环呼吸振动模的强度出现极大值,与其它振动模强度相比,作者认为电磁场的增强和电荷转移均使该谱峰的拉曼信号增强.胞嘧啶的环呼吸振动频率随着电位负移而红移,这意味着它与金电极的成键作用减弱.同时也表明SERS谱可用于研究生物分子在金属电极表面的吸附行为.  相似文献   

5.
在银电极表面4-氨基安替比林(4-AAP)分子自组装,形成单分子膜层.应用表面增强拉曼散射(SERS)光谱原位考察不同电位下4-AAP在电极表面的吸附机理及其组装液pH值对组装分子与银作用方式的影响.依据密度泛函数(DFT)理论预测4-AAP分子振动模式及其SERS光谱归属.结果表明:在开路电位下,组装层中的4-AAP分子以N15和O3为位点,由苯环倾斜和比林环垂直的方式吸附在银表面;但随着外加电位负移,4-AAP分子的苯环趋于垂直吸附而比林环则逐渐以平行方式靠近银表面.在-0.8V电位下,4-AAP分子从银表面脱附.酸性溶液中组装,形成的4-AAP膜层以N15和O3为位点吸附于银表面,比林环倾斜而苯环直立;碱性条件下,分子的吸附位点不变,比林环呈平行取向,而苯环倾斜于银表面.  相似文献   

6.
基于壳层隔绝纳米粒子增强拉曼光谱技术,合成了Au@SiO2纳米粒子,并对其进行了相关表征. 结果表明,包裹的二氧化硅层连续、致密,Au@SiO2膜/Ti电极上可获得金属钛电极上吸附吡啶分子的高质量表面增强拉曼光谱(SERS)信号. 通过Pt、Ni电极的测试,证实该信号源于吸附在基底表面的吡啶分子. 此外,Au@SiO2膜/Ti电极上吸附吡啶分子的现场SERS光谱研究表明,在-0.1 V ~ -0.6 V电位区间,吡啶分子平躺吸附,从-0.6 V起吸附的吡啶分子由平躺逐转变为垂直,而当电位为-1.2 V时,电极表面析氢,吡啶脱附.  相似文献   

7.
利用原位表面增强拉曼散射(SERS)技术, 观察了2-巯基吡啶在锌电极上单层吸附和脱附行为. SERS实验结果表明, 2-巯基吡啶分子主要通过巯基上的硫原子垂直吸附于锌表面. 原位SERS光谱电化学发现, 当外加电位达到-1.4 V vs. SCE时, 分子开始从表面脱附, 并伴随吸附构型变化, 在-1.6 V时发生完全脱附.  相似文献   

8.
利用表面增强拉曼光谱(SERS)技术研究了在粗糙化银电极表面吸附的异亮氨酸自组装单层膜结构及其表面性质随溶液酸碱性和电极电位改变的特征.研究结果表明溶液pH值的变化并没有显著改变异亮氨酸分子在银电极表面以去质子化羧基吸附为主的特征.借助于高氯酸根离子这一SERS光谱探针,对异亮氨酸单分子膜的表面酸碱性质进行了表征和分析.而就电位改变对该单分子膜结构的影响而言,在所研究的电位范围内,单分子膜中的异亮氨酸分子是通过去质子化羧基与氨基两个位点而吸附的,且吸附作用随电位负移而呈现有规律的变化.  相似文献   

9.
采用基于核壳纳米粒子的壳层隔绝纳米粒子增强拉曼(SHINERS)以及Au纳米粒子增强技术, 对比研究了4-氰基吡啶(4-CNPy)在TiO2表面的吸附行为. 结果表明, 采用2种技术所获得的光谱存在明显的差别. 利用前者得到了4-CNPy在TiO2电极上随电极电位变化的吸附方式. 在电位为0时, 分子以吡啶环上的N垂直吸附; 随电位负移, 部分分子变为倾斜吸附, 且在电位为-1.0 V时倾斜角度变大. 在正电位区间, 分子始终以吡啶环上的N垂直吸附. 而采用Au纳米粒子滴加在TiO2电极上的方式, 则得到吸附在TiO2, Au及TiO2/Au复合结构上的总光谱信息.  相似文献   

10.
将单(6-巯基-6-去氧)-β-环糊精(HS-β-CD)通过金硫键自组装在金电极(GE)表面, 构建了一种简单、 快速、 灵敏的超分子识别L-半胱氨酸(L-Cys)的电位型电化学传感器. 通过循环伏安法和交流阻抗法研究了膜表面的电化学行为; 通过扫描电子显微镜(SEM)和X射线光电子能谱(XPS)表征了电极表面的膜组装效果, 其作用机制是固定在金电极表面的HS-β-CD空穴可通过分子间作用力吸附结合带负电的L-Cys, 使电极表面的膜电位发生改变, 导致对L-Cys的超分子选择性识别作用, 从而实现对L-Cys的定量分析. 在优化的实验条件下, 该电极在pH=6.0的磷酸盐缓冲溶液中对L-Cys有良好的电位响应性能, 线性范围为1.0×10 -7~1.0×10 -4 mol/L, 斜率为(-65.29±1.0) mV/pc(25 ℃), 检测下限达到6.0×10 -8 mol/L; 电极响应速度快、 稳定性和重现性好、 抗干扰能力强. 将该电极用于实际猪血清和猪尿液样品中L-Cys含量的测定, 回收率为95.0%~104.7%, 表明该新型电极在生命科学等领域具有良好的应用前景.  相似文献   

11.
应用电化学现场表面增强拉曼光谱(SERS)以及直接电化学合成技术分别研究了非水体系中苯并咪唑及2-巯基苯并咪唑在铜电极表面的吸附行为及其与三苯基膦(pph3)共存的表面过程.在较负电位区间苯并咪唑主要以分子形式吸附在电极表面.在较正电位区间,电极表面生成类高分子(CuBIM)n膜,具有缓蚀作用,对含有pph3的该体系,Cu+首先与pph3配位形成稳定的阳离子,进入溶液之后与BIM配位生成稳定的配合物,导致不能在表面有效地成膜而破坏了苯并咪唑的缓蚀作用.2-巯基苯并咪唑在Cu表面主要通过自组装单层方式在电极表面吸附,且在实验测试的电位区间内,MBI均是以S端与金属表面作用,其吸附取向随电位正移由倾斜逐渐向接近垂直过渡,并在金属表面形成MBI单分子层膜.pph3的加入不影响MBI在Cu电极表面的成膜行为.电化学现场模拟合成及产物结构组成解析为推断表面反应过程提供了直接证据.  相似文献   

12.
苯乙炔吸附在金电极上的现场表面增强拉曼光谱研究   总被引:1,自引:0,他引:1  
采用电化学现场表面增强拉曼光谱研究了苯乙炔在金电极上的吸附行为及表面反应过程. 负电位下拉曼光谱的变化表明, 苯乙炔分子的炔端碳与金属电极成键, 分子垂直吸附于金电极表面. 在所研究的负电位区间内, 分子在电极表面的吸附取向并未随电位发生改变. 电化学现场光谱研究表明, 苯乙炔分子随电位负移, 碳碳叁键被加氢还原. 通过对比苯乙烯的现场表面增强拉曼光谱发现, 在-0.6 V至-1.2 V的电位区间内, 苯乙炔经过中间步骤生成苯乙烯, 最终被完全加氢为苯乙烷.  相似文献   

13.
顾仁敖  蒋芸  孙玉华 《化学学报》2004,62(23):2352-2354
利用共焦显微拉曼系统研究了在乙腈非水体系中,二甲基亚砜(DMSO)与乙腈的竞争吸附,同时研究了咪唑在非水乙腈体系中的吸附情况.结果表明:在非水乙腈溶液中存在着明显的竞争吸附现象,咪唑和二甲基亚砜较乙腈分子在银电极上优先吸附,明显抑制了乙腈分子的吸附,随着电位负移,咪唑或二甲基亚砜逐渐脱附,更多的乙腈分子才得以接近电极表面并开始发生解离反应.  相似文献   

14.
采用循环伏安(CV)法、计时电流法和电化学原位表面增强拉曼散射光谱(SERS)技术研究了甲酸在Pt-Ru/GC电极上的氧化行为, 发现甲酸在Pt-Ru/GC电极上与在粗糙Pt电极上一样, 也能自发解离出强吸附中间体CO和活性中间体—COO-. 从分子水平证实钌的加入有利于提高电极对甲酸的电催化氧化活性, 当镀液中Pt:Ru的摩尔比从10∶1变化到1∶1, CO的氧化峰电位从0.41 V负移至0.35 V, 约负移了60 mV. Pt-Ru/GC(1∶1)电极与粗糙Pt电极相比, CO在电极表面氧化完毕的电位亦负移了约200 mV. 该研究结果表明, 电化学原位表面增强拉曼散射光谱技术可望成为研究电催化反应机理的普适谱学工具.  相似文献   

15.
应用衰减全反射表面增强红外吸收光谱法分别研究了0.1 mol•L-1 HClO4中对硝基苯甲酸(PNBA)和0.1 mol•L-1 KClO4中吡啶(Py)在铂电极上的吸脱附. 结果表明在较高电位下(0.3~0.7 V vs. SCE) PNBA是通过其羧基脱质子后羧酸根的两个氧原子等位吸附在Pt电极表面, 而随着电位的负移, 除PNBA逐步脱附外, 还呈现出单个氧原子吸附的谱学特征. 光谱强度与电位的关系表明PNBA在铂电极表面吸脱附的中间电位约为0.2 V vs. SCE. 吡啶的吸附主要是通过氮原子的孤对电子及脱氢后的α碳原子与Pt电极表面键合. 在较宽的电位区间(0.4~-0.4 V vs. SCE)吡啶的吸附方式和取向基本维持不变.  相似文献   

16.
利用电化学循环伏安和极化曲线,考察了镍电极在不同浓度苯并咪唑(BMIH)-乙腈体系的缓蚀效果. 结果表明,随着缓蚀剂BIMH浓度的增加,其氧化电位正移,且氧化电流降低,腐蚀电位正移. 调制电位下测试镍电极表面BMIH吸附的现场表面增强拉曼光谱(SERS). 随电位正移,BIMH可在镍电极表面吸附成膜,与金属镍生成配合物,阻止镍电极的腐蚀. 并考察了不同浓度BIMH的成膜行为. 结果发现,0.001 mol·L-1 BIMH即可在镍电极表面成膜,这表明非水乙腈体系的镍表面,BMIH有较佳的缓蚀效果.  相似文献   

17.
顾仁敖  陈惠  刘国坤  任斌 《化学学报》2003,61(10):1550-1555
在镍电极表面制备了γ-氨丙基三甲摒在硅烷膜并对其形成和结构进行了研究 。镍电极表面有机官能团硅烷膜的X射线光电子能谱(XPS)结果表明氮、硅等元素 在电极表面的存在,并且氨基在膜中有若干种存在方式,包括自由氨基和质子化的 氨基。通过对表面增强拉曼散射光谱(SERS)谱图的分析,发现与电极表面作用的 吸附基团硅醇羟基和氨基发生了竞争吸附,它们及其邻近基团的拉曼谱几随着电位 的负称除了相对强度发生变化以外,还发生了一定的位移,这缘于吸咐基团吸附的 量和吸附取向随电极电位发生了变化并形成的更为复杂的界面结构;氨基不同存在 方式之间也会随之发生转变,这一结果与X射线光电子能谱分析的结果相符合。原 子力显微镜(AFM)结果表明镍电极表面的有机官能团硅烷膜呈现为一种较规则的 多孔结构。  相似文献   

18.
吸附硫通常被认为是表面化学反应毒物,然而少量的硫能够增强铂的一氧化碳(CO)电氧化活性.本文利用常规电化学手段及表面增强拉曼光谱研究了CO在硫修饰的铂表面的电氧化.对于溶液中的CO,其在硫修饰铂电极上的起始氧化电位最多可以比非修饰电极负移超过300 mV,而且在硫覆盖度低于0.6的条件下电位负移量随覆盖度增加而增大.这一电催化活性的增强也受溶液pH值的影响.在低硫覆盖度(小于0.3)下,吸附态的CO电氧化峰值电位比非修饰铂电极负移约40 mV.然而,在高硫覆盖度下,其峰值电位比非修饰铂电极正移近30 mV.表面增强拉曼光谱显示共吸附硫使Pt—CO振动频率显著红移.作者认为这些结果是由于吸附硫弱化Pt—CO键及阻化CO在铂表面的移动引起的.  相似文献   

19.
采用原位电化学表面增强拉曼光谱(EC-SERS)研究了硫代水杨酸(TSA)吸附在活性Au电极表面的自组装单分子层(SAMs).TSA在活性Au表面的化学吸附及不同酸碱度下的TSA浸饰单层膜的SERS光谱,表明随pH值的增加,峰强呈现2个不同的下降阶段.通过EC-SERS考察不同电富集时间和电位的影响,显示在酸性介质和0.7 V及70 s富集时间下,可以获得最大EC-SERS信号,并随着电位负移,信号逐渐减弱,直至基本消失,表明TSA分子在Au表面排布状态会随外加条件的改变而发生变化.通过计算TSA在不同pH值下的分布分数以及探针分子在不同电位下的增强因子(EF),结合SERS和EC-SERS的变化走势对比,得出TSA在活性Au表面自组装形成单分子层/膜的机理,指出由于TSA不同的电化学吸附取向,以及高负电位下的还原/脱附作用,使得Au表面拉曼活性降低,造成EF显著减小,不可逆地失去了SERS的活性.  相似文献   

20.
利用电化学和表面增强拉曼光谱方法研究了咪唑和钴电极的相互作用. 分析并指认了不同电极电位下咪唑溶液中钴电极上的表面增强拉曼光谱(SERS), 发现随电极电位的变化, 在钴电极表面存在三种表面物种并且可以在一定程度上相互转化. 在较负电位(−1.2~−0.9 V)区间, 咪唑在钴电极表面以吸附物种为主, 随电位正移, 吸附取向由通过吡啶N垂直吸附逐渐向C2=N3双键倾斜; 在较正电位区间(−0.8~−0.7 V)内, 吸附咪唑的信号逐渐减弱乃至消失, 而钴和咪唑的络合物信号逐渐增强; 开路电位(−0.6 V)下出现很强的钴的氧化物谱峰. 同时, 文中比较了钴电极表面在空白溶液和加入咪唑后的溶液中的极化曲线, 发现咪唑对钴电极的缓蚀作用较为明显. 该研究结果表明, 联合表面增强拉曼光谱技术和电化学方法使得人们可以从分子水平上了解表面物种和电极表面间复杂的相互作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号